Building and Environment 212 (2022) 108832

Contents lists available at ScienceDirect Building and
Environment

Building and Environment

ELSEVIER journal homepage: www.elsevier.com/locate/buildenv

Check for

Influence of data pre-processing and sensor dynamics on grey-box models  [&&s
for space-heating: Analysis using field measurements

Xingji Yu®', Kristian Stenerud Skeie ”, Michael Dahl Knudsen ¢, Zhengru Ren ¢, Lars Imsland °,
Laurent Georges*

& Department of Energy and Process Engineering, Faculty of Engineering, NTNU - Norwegian University of Science and Technology, Kolbjorn Hejes vei 1a, 7034,
Trondheim, Norway

b Department of Architecture and Technology, Faculty of Architecture and Design, NTNU -Norwegian University of Science and Technology, Alfred Getz’ vei 1, 7034,
Trondheim, Norway

¢ Department of Civil and Architectural Engineering, Aarhus University, Inge Lehmanns Gade 10, 8000, Aarhus C, Denmark

4 Department of Marine Technology, Marinteknisk senter, NTNU - Norwegian University of Science and Technology, Tyholt Otto Nielsens veg 10, 7052, Trondheim,
Norway

¢ Department of Engineering Cybernetics, Faculty of Information Technology and Electrical Engineering, NTNU - Norwegian University of Science and Technology, O. S.
Bragstads plass 2, 7034, Trondheim, Norway

ARTICLE INFO ABSTRACT
Keywords: A grey-box model is a combination of data-driven and physics-based approaches to modeling. For applications in
Data pre-processing buildings, grey-box models can be used as the control model in model predictive control (MPC) or to characterize
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the thermal properties of buildings. In a previous study using data generated from virtual experiments, the in-
fluence of data pre-treatment on the performance of grey-box models has been demonstrated. However, field
measurement differs from data generated using building performance simulation (BPS). This is because the
precision and accuracy, the location, and the dynamics of the sensors could be different. Consequently, this paper
extends previous results and conclusions using a real test case of a highly-insulated residential building. The
results confirm that data pre-processing has a minimal influence on the identified results (parameter values and
simulation performance) for deterministic models. On the contrary, data pre-treatment influences the perfor-
mance of stochastic models as follows. Firstly, large sampling time (Ts) can cause the parameters to become non-
physical and can sometimes reduce the one-day ahead prediction performance. With large T, the anti-causal
shift (ACS) proves to be beneficial to keep the parameters physically plausible while low-pass filtering can
also contribute but to a lesser extent. With large T, ACS does not guarantee a higher one-day ahead prediction
performance for stochastic models, whereas pre-filtering generally has a positive impact. Secondly, for the
stochastic model, the sensor dynamics should be modeled if the sensor has a noticeable time constant to guar-
antee the physical plausibility of the parameters. Thirdly, the dynamics of the hydronic radiator do not need to be
modeled if the time constant in the temperature sensors is larger than the radiator. These findings provide
practical guidelines for grey-box modeling of buildings with field measurement data.

time-series data from the system. This method needs sufficient training
data to guarantee the accuracy of the model [2]. Grey-box modeling is a
combination of these two techniques. This method takes the dominant
physical processes to construct the model structure of the system and
then fits the model parameters with the measurement data. Lumped
resistance and capacitance models are used (i.e. RC models) to construct
the grey-box model structure of a building, which means the thermal
dynamics of the building are expressed by an electric circuit analogy [3,
4]. Grey-box models are said to have better extrapolation properties

1. Introduction

The mathematical modeling of the thermal dynamics of a building is
typically divided into three main categories [1]: white -, black-, and
grey-box models. White-box models are based on physical laws (e.g.
mass-, energy- and momentum balance equations). The white-box
models are generally mathematically complex but have high accuracy.
Black-box models are pure data-driven methods based on the measured
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Nomenclature
RES Renewable Energy Sources
DR Demand Response
MPC Model Predictive Control
BPS Building Performance Simulation
RC Resistance and Capacitance

SNR Signal to Noise Ratio
PRBS Pseudo-Random Binary Signal
PI Proportional Integral

NRMSE Normalized Root Mean Squared Error
MBE Mean Bias Error

PSO Particle Swarm Optimization
ACS Anti-Causal Shift

DS Direct Sampling

MA Moving Average

FIR Finite Impulse Response

Det Deterministic Model

Sto Stochastic Model

HTC Heat Transfer Coefficient

HC Heat Capacitance

than black-box models [5]. In addition, they have been widely applied to
solve problems in building technologies, such as building load estima-
tion, control and optimization, and building-grid integration [6,7]. The
paper focuses on two main applications of grey-box models which are
model predictive control (MPC) and characterization of the thermal
properties of buildings using field measurements [6,8].

1. The emergence of MPC in buildings is related to the concept of en-
ergy flexibility and demand response (DR). The conventional electric
energy system is undergoing dramatic changes due to the steadily
rising share of renewable energy sources (RES). Power generation
from RES is often decentralized and intermittent, which may cause
considerable volatility to the electric grid. The power imbalance in
the supply and demand sides can have severe implications for power
quality and reliability [9]. Therefore, more flexible resources are
needed to enable increasing penetration of intermittent RES. De-
mand response (DR) is gaining more attention in power system op-
erations recently, driven by the smart grid concept [10]. Demand
response means changes in energy use by the end-use customer from
their normal consumption patterns in response to a specific penalty
signal (e.g. price signal, CO; intensity factor for electricity signal)
[10-13]. DR is closely related to the concept of energy flexibility
defined by the IEA EBC Annex 67 as the ability of a building to
manage its demand and generation according to local climate con-
ditions, user needs and grid requirements [14]. Model predictive
control (MPC) is considered a suitable technique for performing DR
in a building [7,15] or for activating building energy flexibility [14].
Regarding space-heating, the thermal mass of a building can be a
significant short-term heat storage to perform DR [16-20]. The
exploitation of such thermal storage requires the indoor temperature
to fluctuate within limits that are acceptable for the occupants.
Previous studies have identified significant DR potential in using
economic model predictive control (E-MPC) to exploit the thermal
mass of residential buildings, see e.g. Refs. [21-23]. In these appli-
cations, grey-box models should enable adequate prediction to ach-
ieve good control performance.

2. Developing a suitable grey-box model with physically plausible
(interpretable) parameters is appreciated from the building analysis
point of view [19]. Physically reasonable parameters in grey-box
models could contribute to characterizing the thermal properties of
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a building using field experiments, such as the overall heat transfer
coefficient (HTC).

Data can be processed (or altered) by sensors, the data acquisition
system (DAQ) or by the modeler before being used for model identifi-
cation. Data pre-processing (or data pre-treatment) is acknowledged to
have a key influence on the model identification results [24]. For
instance, Ljung et al. [25] have analyzed this theoretically and demon-
strated the strong influence of the sampling time. However, this topic
has hardly been addressed in the specific field of grey-box models for
building thermal dynamics. One exception is Madsen et al. [8] that
mentioned the importance of data pre-processing in their guidelines, but
they did not discuss the topic in detail in their report. Therefore, the
main objective of the paper is to systematically investigate the influence
of different data pre-processing techniques on the performance of
grey-box models for the building thermal dynamics, with MPC and the
physical plausibility of parameters in focus. In the past, this effect has
been studied in Yu et al. [26] with deterministic and stochastic models.
However, they used data generated by virtual experiments, namely
multi-zone simulations using the building performance simulation (BPS)
software IDA ICE [27]. The data pre-processing methods applied in this
study are the sampling time, low-pass filtering and the anti-causal shift
(ACS) [25]. ACS corresponds to a shift of the input data one step ahead
(also equivalent to a backward shift of the output). Several main con-
clusions have been demonstrated in this previous study [26]:

e For deterministic models, the data pre-processing has limited influ-
ence on the identification results. However, the values of the pa-
rameters are strongly dependent on the training dataset and can
sometimes be physically non-plausible.

For stochastic models, the parameters are less dependent than the
deterministic models on the training dataset. However, they become
non-physical without ACS for large sampling time (Ts > 15 min).
Large Ts does not alter the simulation performance of the stochastic
model. ACS proved to be extremely beneficial to guarantee the
physical plausibility of parameters with large T,. Nevertheless, it
generally has a negative influence on the simulation performance of
the model.

As these important conclusions are based on virtual experiments, the
first objective of the paper is to compare these conconclusions to a real
test case based on field measurements. Field measurements deviate from
virtual experiments in the following way:

e In reality, sensors have finite precision and accuracy, while the
temperature and power data exported from BPS is perfect (i.e., noise-
free observations).

In most BPS software, the air volume of each room is supposed to be
isothermal. In reality, the temperature field in a room is not uniform.
Two important effects should be considered. Firstly, the room air can
present significant temperature stratification, especially when the
heat emitter is close to maximum power. Secondly, the sensors are
usually mounted on a wall in a casing. For sudden changes in the
indoor temperature, the measured value with a wall-mounted sensor
may thus differ from the real air temperature. The thermal dynamics
of the sensor due to the casing can also be seen as a form of implicit
data pre-treatment if the sensor dynamics are not modeled.

This paper uses measurement data from an experimental building,
the ZEB Living Lab [28,29] to compare the conclusions that were orig-
inally based on virtual experiments [26]. Three complete datasets of the
indoor temperature corresponding to different sensor locations are
available:

e Several temperature sensors without casing are mounted at different
heights on a vertical bar located in the middle of different rooms. The
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averaging of these measurements gives an approximation of the
volume-averaged indoor air temperature, which is a good represen-
tation of the indoor air temperature T; of a mono-zone model (i.e. one
zone for the entire building). In addition, the volume-average indoor
temperature is less sensitive to the vertical temperature stratification
than the measurement from a single sensor.

For market penetration, it is better to limit the number of tempera-
ture sensors to one in each room. Thus, it is important to investigate
the possibility of identifying a proper grey-box model with mea-
surements from a single temperature sensor. Firstly, one temperature
sensor is located on a vertical bar at a medium height in the living
room. The stratification effect at mid-height should be lower than the
top and low locations in the room. Secondly and probably the most
realistic configuration, another temperature sensor is mounted on a
wall at the same mid-height location as the previous sensor (placed
on the bar).

The second objective of the paper is to analyze how the type of in-
door temperature measurement influences the performance of the grey-
box models.

The main objective is to identify the specific influence of different
data pre-processing techniques on the grey-box model performance.
Other phenomena that could have an impact on the model performance,
such as overfitting, should be removed from the analysis. Therefore,
model structure selection is performed in detail in this paper before
starting to analyze the influence of the data pre-treatment. It starts with
a review of the literature regarding the structure of grey-box models.
This results in the selection of a set of structures to be evaluated. The
evaluation includes the analysis of structural and practical identifiability
of the selected models, their prediction performance and physical
plausibility of the parameters. Checking structural identifiability is the
prerequisite in the model identification process [30,31]. This property
guarantees that the parameters can be uniquely determined from the
input-output data under ideal conditions of noise-free observations and
error-free model structure. The structural identifiability of the candidate
models in this study is verified using DAISY software [30]. However,
field measurement data always contain noise and error, which chal-
lenges the practical identifiability of the model. Therefore, the predic-
tion performance and the physical plausibility of parameters are taken
as the criteria for the model selection. Finally, for stochastic models, a
cumulative periodogram is used as an additional criterion to prove that
the model is complex enough to capture the building dynamics.

The remainder of the paper is structured as follows. Section 2 pro-
vides information on the experimental setup, which includes the
building geometry, measurement devices, the definition of test cases and
the boundary conditions. Section 3 describes the methodology of this
study, including the grey-box model structure and data pre-processing
techniques used for this study. The algorithm to identify the grey-box
model parameters is also outlined, followed by the definition of key
performance indicators (KPIs). Section 4 gives the results and is divided
into three main aspects. The most suitable model structure is selected
with the original data with 5 min sampling time and the volume-
averaged temperature. Then, the influence of data pre-processing and
the sensor selection is presented. Finally, conclusions are presented in
Section 5.

2. Description of experiments
2.1. Case building

The experiments performed in this study were carried out in the ZEB
Living Lab, a single-family, zero-emission house with a heated floor area
of about 100 m? on the campus of the Norwegian University of Science
and Technology (NTNU) in Trondheim. The building envelope has a
wooden frame with mineral wool measuring 35-40 cm and a glazing
ratio of 0.2. The space-heating can be floor heating, a central radiator, or
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ventilation air. The ventilation system is equipped with a heat recovery
unit. By operating the doors in the building, four zones can be created
(bedroom west, bedroom east, bathroom, and living areas). The
appearance of the building and the internal layout of the Living Lab is
shown in Fig. 1. This study is based on two sets of experiments in this
building with different space-heating emission systems and different
periods of the space-heating season. Data from using two different heat
emitters are used to make the conclusions more general.

The first set of experiments (from the 18th April to 15th May 2017)
used an electric heater for space-heating. Detailed information on the
measurement setup and data can be found in previous work [28,32]. The
corresponding length of these three experiments are 6 days, 11 days and
7 days, respectively. The electric heater of 2.6 kW was placed in the
center of the building (the heater is marked in red in Fig. 1 (b)). A
pseudo-random binary signal (PRBS) has been applied to the electric
heater to excite the thermal dynamics of the building. PRBS is a periodic
and deterministic signal with white noise properties and a high
signal-to-noise ratio (SNR). The PRBS signal activates the dynamic sys-
tem at a broad range of frequencies.

Four experiments were carried out, and only the last three were
successful. The successful experiments are named Experiments 2, 3, and
4 (i.e., Experiment 1 was discarded). The dataset has a time interval of 5
min. The measurements include the outdoor temperature, indoor air
temperatures, global solar irradiation and electricity consumption,
including the radiator power (Qp). To avoid modeling the air-handling
unit (AHU), the ventilation losses from the mechanical ventilation are
introduced as one input to the grey-box model in this study. These
ventilation losses are explicitly pre-calculated with the measured tem-
perature difference between the supply and exhaust ventilation air
combined with the measured airflow rate (constant air volume, CAV).
The electric heating system has negligible thermal inertia compared to
the building envelope, so it is assumed that the dynamics of the radiators
play a limited role. Experiments 2 and 4 were conducted with internal
doors opened, which theoretically should lead to a more uniform spatial
distribution of the air temperature inside the building while all the doors
were closed in Experiment 3. Air was pre-heated using a heating coil in
Experiment 4 only. The building is unoccupied in all the experiments,
but electric dummies operated by a control schedule have been used
leading to realistic internal gains.

2.2. Experiment with the hydronic radiator

The experiment with the hydronic radiator was initially performed to
investigate cost-effective MPC implementation (E-MPC) with control of
the hydronic radiator in a Norwegian zero-emission building (Living
Lab) [29]. The experiment lasted for approximately one month (from
mid February to mid March 2017), with an 18-day excitation phase and
an E-MPC operation phase of two weeks. A randomly generated binary
signal switching the radiator temperature set-point between 21 °C and
24 °C was created to excite the thermal dynamics of the building and
collect measurements for training the model. This new training dataset
is based on six days in February and is named here as Experiment 5. The
dataset has a time interval of 5 min.

The hydronic radiator has a rated power of 4.7 kW (at rated tem-
perature 75 °C/65 °C) and was in the same place as the electric heater.
The supply water temperature was maintained at about 55 °C leading to
a maximum radiator power of 2.5 kW. The thermostatic valve in the
radiator adjusts the mass flow using a proportional-integral (PI)
controller to track the set-point temperature. Compared to the electric
heater, the thermal mass of the hydronic radiator with 113 kg of steel
cannot be neglected. The power delivered to the hydronic radiator (Qy)
is measured by an energy meter based on the difference between supply
and return temperatures. When the hydronic radiator is switched on, the
initial water temperature in the radiator is close to the indoor air tem-
perature. Due to the thermal mass of the radiator, it takes time for the
return temperature to heat up and reach steady-state (when the power
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Fig. 1. View of the ZEB Living Lab (a) and floor plan of the ZEB Living Lab with temperature sensor location (b).

delivered to and emitted by the radiator are equal). This makes a large
difference in supply and return temperatures at the beginning, leading to
a very high start-up peak for Qn. The maximum emitted power of the
radiator in steady-state is around 2.5 kW, while the maximum delivered
power during start-up periods is around 4.0 kW. This confirms that the
thermal dynamics of the hydronic radiator are significant. The summary
of all the experiments used in this study is given in Table 1.

2.3. Indoor temperature measurement

In the experiments with the electric heater, PT100 sensors with an
accuracy of +0.1 K are placed at different locations in the building; see
details in Ref. [28]. This leads to the definition of three datasets:

e Two available datasets correspond to different placement of PT100
temperature sensors without casing and with wireless transmitters.
They are placed in a vertical bar in the middle of the two living rooms
(see green dots in Fig. 1 (b) and Fig. 2 (a)). For each bar, the height of
the six sensors is 0.18 m, 0.95 m, 1.6 m, 1.7 m, 2.3 m and 3.4 m,
respectively. The volume-averaged temperature of the building is
calculated using the measurement from all the sensors placed in the
vertical bars and evaluated using the volume average at each hori-
zontal layer. The single sensor without casing dataset corresponds to
the measurement at 1.6 m in the living room south. The height of 1.6
m is close to the middle height of the building, where the influence of
stratification is expected to be minimal (meaning that the measured
temperature at 1.6 m is the closest to the volume-averaged
temperature).

The third dataset is based on PT100 sensors mounted on the wall in a
casing (see the orange dot in Fig. 1 (b) and Fig. 2 (b)). The height of
the wall-mounted sensors is 0.1 m, 0.8 m, 1.6 m, 2.4 m and 3.2 m,
respectively. The third dataset corresponds to the measurement of a
single wall-mounted sensor mounted in the south of the living room at
the height of 1.6 m.

In the experiments with the hydronic radiator, only the temperature
measurements from the wall-mounted temperature sensor are available.
Fig. 3 shows the temperature reading from the wireless temperature
sensors with different heights (0.18 m, 1.6 m and 3.4 m) and the wall-

Table 1
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mounted temperature sensor (1.6 m) against the volume-averaged
temperature. The stratification of the temperature of the wireless tem-
perature sensors at different heights can be observed. The stratification
gets larger when the solar radiation or the radiator power is large. The
reason for choosing the sensor in the south was to capture the influence
of solar radiation. The thermal dynamics of the wall-mounted sensor can
also be observed. The reading from the wall-mounted sensor is smoother
compared to the volume-averaged temperature and the readings from
the single wireless temperature sensors.

3. Methodology
3.1. Grey-box model structure

The structure of the grey-box models is derived from the conserva-
tion of energy. The physics modeled by the grey-box models is the heat
transfer between the building and its outdoor environment, the solar
radiation and internal gains.

The ZEB Living Lab is super-insulated with an efficient heat recovery
of the ventilation air. These two points lead to limited temperature
differences between rooms [33] (compared to the temperature differ-
ence between indoor and outdoor air) even if internal doors are closed.
Consequently, the building can be modeled as one thermal zone (i.e., the
mono-zone model with a unique node to represent the indoor temper-
ature). Previous studies [29,32,34] confirmed that a mono-zone grey--
box model is able to make an accurate prediction on the air temperature
in the ZEB Living Lab, for closed and open internal doors.

Grey-box modeling is a very common approach and a considerable
amount of research has already been applied to this method. In their
study, Viot et al. [35] provided a comprehensive list of research papers
on MPC that used RC models. Bacher and Madsen [36] identified a
suitable model using data obtained from an unoccupied office building.
The probability ratio tests were used to analyze models of different or-
ders. The results showed that increasing the model order from the
third-order does not substantially improve the results. In Ref. [37],
Berthou et al. found that the second-order model performs best for
occupied office buildings. Braun et al. [38], Hu et al. [39] and Goyal
[40] used the second-order model as the base component for the
multi-zone model of the building. It was concluded that the

Summary of the four experiments, “Full set” means all measurements of volume-averaged, single sensor (no casing), wall-mounted sensor are available.

Experiments Radiator Door Sampling time Period Use Temperature Sensor
2 Electric Open 5 min 18/04-24/04 (2017) Validation Full set

3 Electric Closed 5 min 27/04-08/05 (2017) Validation Full set

4 Electric + AHU Open 5 min 08/05-15/05 (2017) Training Full set

5 Hydronic Open 5 min 22/02-27/02 (2019) Training Wall-mounted




X. Yuetal Building and Environment 212 (2022) 108832

(@ ®)

Fig. 2. Wireless temperature sensors (a) and wall-mounted temperature sensors (b).
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Fig. 3. Comparison of different indoor temperature sensors, global solar irradiation on a horizontal plane and heating power of the electric heater for Experiment 4.

Fig. 4. Structure of the 5SR3C model.
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second-order model is sufficient for good prediction results for indoor
temperature and heating power by Palomo Del Barrio et al. [41] and
Reynders et al. [42]. Brastein et al. [43] showed that deterministic
grey-box models at second-order could face the problem of practical
identifiability. Yu et al. [34] proposed two grey-box model structures
derived from VDI 6007 [44] and ISO 13790 [45]. The results were that
with few measurements and a large number of unknown parameters, the
identified parameters could easily become non-identifiable. Further-
more, due to overfitting and convergence issues, Reynders et al. [42]
concluded that heat flux measurements were needed to ensure observ-
ability for higher-order models (i.e. fourth- and fifth-order models).
Thus, based on these previous studies, our paper only considers the
model structure up to the third-order.

As a result, seven mono-zone model structures limited to third-order
have been taken from the existing literature [36,42,46]. The selection
process will determine the best model structure to be used to investigate
the specific influence of data pre-processing. These seven models
correspond to different combinations of RC components and splitting
factors for the distribution of internal gains between the nodes. Ac-
cording to report [28], some sensors in the ZEB Living Lab at specific
locations were directly exposed to solar radiation at certain periods of
the day, which makes some of the measurements an unsatisfactory
representation of the air temperature. The dataset in Experiment 4 with
open internal doors is chosen as the training dataset for the case with the
electric heater. Only the 5 min dataset is used for the model selection to
avoid aliasing errors. The datasets in Experiments 2 and 3 were used as
the validation datasets to analyze the prediction performance of the
models. Structural identifiability is a prerequisite for system identifica-
tion [47], which refers to the theoretical possibility of determining the
parameter values from the input and output data. Thus, the structural
identifiability of the candidate model structures has been tested by the
DAISY software [30,48] before implementing the identification process.
The result is that all the seven grey-box model structures are structurally
identifiable. The most complex structure is the 5R3C model and is shown
in Fig. 4. Other model structures are obtained by simplification and can
be found in the Appendix. The physical meaning of the model parame-
ters is listed in Table 2.

The corresponding state-space model of Fig. 4 is given by:
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Table 2
The physical interpretation of the parameters of all grey-box models.

Parameters  Physical interpretation and unit

T; Temperature of the internal node (i.e., indoor air, furniture) [°C].

T, Temperature of the external walls [°C].

Ts Temperature of the internal wall surfaces of external walls [°C].

Tm Temperature of the internal walls [°C].

T, The outdoor (or outdoor) temperature [°C].

C; Heat capacity including the thermal mass of the air, the furniture
[kWh/K].

Ce Heat capacity of the node external wall for the second-order and third-
order models [kWh/K].

Cm Heat capacity of the node internal wall for the third-order model
[kWh/K].

UA Overall heat transfer coefficient (HTC) between T; and T, [kW/K].

UA;. Heat conductance between the building envelope and the interior
[kW/K].

UAea Heat conductance between the outdoor and the building envelope
[kW/K].

UAns Heat conductance between the outddoor and the interior node
(components with negligible thermal mass, like windows and doors)
[kW/K].

UAim Heat resistance between the internal thermal mass and the interior
node [kW/K].

UAj Heat resistance between the indoor wall surface and the interior node
[kW/K].

Qint Internal heat gain from artificial lighting, people and electric
appliances [kW].

Qn Heat gain delivered to the heat emitter [kW].

Quent Heat gain from the ventilation (pre-computed using measurements)
[kW].

Lo1 Global solar irradiation on a horizontal plane [W/m?].

A; The effective window area of the building corresponding to T; [m?].

A, The effective window area of the building corresponding to T, [m?].

An The effective window area of the building corresponding to Ty, [m?].

A The effective window area of the building corresponding to Ts [m?].

a Fraction of internal gains injected to the internal node.

3.2. Model identification tool and optimization

Both the deterministic and stochastic models are investigated using
the MATLAB system identification toolbox [49]. The stochastic models
are formulated as an extension of deterministic models (K = 0) [8]. The
generic equations of the stochastic linear state-space model in innova-

(UAi. + UA,,) UAZ UA;-UA; 0
. C, C.-(UAj; + UA;e + UAi) C.-(UAj; + UAje + UAin)
T,(t T,
T ( ) _ UA;.-UA; (UAy + UAy) UA;;-UA; UAin T((tt))
T‘(t) C['(UA[s + UA; + UAmf) Ci C['(UAI: + UA;, + UAinf) G T:,,(t)
m l
( ) 0 UAI-m UAim
Cm C"’
UAE,, UA,'E'UAinf UAie'UAinl' 0 0 0
Co  Co(UAy+ UAie + UAig)  Co-(UAy + UA;e + UAinr) T.(1)
. UAy-Uhy, UAy-A, a a 1 ’Qf(g W
-~ ~ -~ int
Ci-(UAjis + UA;e + UAiny) Ci-(UAis + UAie + UAig) G G G Oven(1)
A, l—a 1-a 0n(1)
0 Cm Cm Cm 0
tive form are expressed as:
T.(t) dx
¢ —=Ax(t) + Bu(t) + Ke(t 3
=10 1 0]| (1) @ a0 B FKell) @
T(t)

(1) = Cx(1) + e(1) C))
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where x is the state vector, A, B and C are the system matrices, u is the
input vector (i.e. Ta, Isol, Qint, Qn) and y is the output (i.e. indoor tem-
perature, T;). K is the disturbance matrix of the innovation form (Kalman
gain) [50]. The matrices A, B, C and K are functions of the model pa-
rameters (¢). The continuous-time model is discretized to identify the
model parameters using discrete-time series measurement. The time
discretization in the MATLAB system identification toolbox assumes
piecewise-constant input data during each time interval (i.e. zero-order
hold).

Yu et al. [26] proved that the global optimization routine is more
likely to avoid the local optimum compared to the pure gradient-based
optimization routine. Wang et al. [51] successfully used the
swarm-based optimization algorithm to estimate the parameters of
thermal dynamic models. Thus, this paper also takes the global opti-
mization routine to identify the parameters. The global optimization
routine resorts to the heuristic particle swarm optimization (PSO) at the
first stage. Then the default gradient-based optimization function
(greyest) in the MATLAB identification toolbox is applied in the second
stage to further polish the results. The objective function f(x) of the
optimization is defined as Equation (5).

()

where yj is the measurement output, while y, (0) is the prediction of the
model (i.e., a simulation for the deterministic model and one-step ahead
prediction for the stochastic model).

3.3. Data pre-processing techniques

Three distinct data pre-treatments are investigated in the paper.
They are sampling, low-pass filtering and anti-causal shift (ACS). The
original dataset has a sampling time (Ts) of 5 min which is faster than the
highest frequency of the input signal (Typ), such as the PRBS signal.
Ljung et al. [25] demonstrated that longer sampling time with Tg > T
can lead to non-physical value and variance for the identified parame-
ters, as confirmed by Yu et al. [26] in the context of the thermal dy-
namics of the building. To investigate this effect, sampling times of
increasing duration are considered in our investigations, namely 15, 30
and 60 min. Before resampling the data, a low-pass filter can be applied.
This leads to three scenarios:

o Direct sampling (DS): Sampling at Ts without pre-filtering, which may
cause large aliasing errors for large Ts.

e Moving-average (MA) filter: The original 5 min data is averaged over a
period T in the past before sampling. This can significantly decrease
the aliasing error and it also conserves the integral of the physical
quantity, such as energy.

e Finite impulse response (FIR) filter: A FIR with a cut-off frequency of 1/
T is applied before sampling. The frequency content higher than the
cut-off frequency is removed, which leads to a negligible aliasing
error (if the FIR is designed at a sufficient order).

The low-pass filters are applied to all input and output variables in
the dataset. Thus, theoretically, no delay will be introduced in the
dataset, which could influence the final results. The conclusion would be
different if the low-pass filter was applied to a subset of the input and
output data.

Finally, time labeling plays a role in aligning inputs and outputs for
the identification application [25]. As shown by Ljung et al. [25], a time
shift, called anti-causal shift (ACS), of the input (Input Delay = -T) is
beneficial for model identification with large Ts;.
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3.4. Dynamics of the wall-mounted sensor

Section 2.4 showed that the wall-mounted sensors have non-
negligible thermal dynamics. Consequently, the grey-box model struc-
tures introduced in Section 3.1 should be adapted to account for the
effect of the time constant of sensor dynamics and thus avoid potential
mistakes in the model identification process. As proposed in Bacher et al.
[36], it is possible to add an additional node for the temperature sensor,
leading to an extra resistance (R;) and capacitance (Cs). However, the
authors also pointed out that it was not possible to give a physical
interpretation for the value of C;. This was also found from our pre-
liminary tests based on our data. Therefore, we rather introduced an
adaptation of the model with a single additional parameter, the time
constant of the sensor T = R;Cs. The model decreased the number of
parameters compared to the version in the study [36] to increase the
identifiability of the model. The dynamics for the sensor node is
expressed by the following equation:
dTS(’VlSU" 1
4 (Ti = Tsensor) (6)
where Tj is the temperature of the internal node, Tsepsor is the temper-
ature measurement from the wall-mounted temperature sensors.

3.5. Key performance indicator

Several key performance indicators (KPIs) are defined to evaluate the
model performance. They can be divided into two categories: the
physical plausibility of the identified parameters and the prediction
performance of the model.

Physical plausibility means that the calibrated value of the model
parameters should give a physically reasonable estimate of the thermal
properties of the building. For conciseness in our study, it is not possible
to report the value and variance of all the model parameters. However,
the key parameters that are enough to support our conclusions will be
presented: the overall heat transfer coefficient (HTC) and the capaci-
tances (Cj and C.). In addition, one parameter modeling the influence of
the solar radiation, the effective window area (A;), will also be taken as
KPI when the influence of the data pre-processing is discussed.

The overall heat transfer coefficient (HTC) is the total heat loss of the
building in steady-state. Heat transfer by convection and long-wave
radiative heat transfer is nonlinear. However, heat conduction is
dominant and has good linear properties if the building is highly insu-
lated and airtight. The combination of several resistances of the grey-box
model forms the HTC, which is defined by Equation (7) for the 3R2C
model.

1

HIC=———
1/UA. + 1/UA.,

+ UAins )]

Therefore, only the value of the HTC is shown in the later discussion,
not its variance. Claup et al. [52] evaluated the HTC value of the ZEB
Living Lab to be 83 W/K, which is used as the reference value for the
HTC in this work.

It is challenging to define a physically plausible range for the ca-
pacitances (C; and C,) since their values strongly depend on the exci-
tation signal. However, it is possible to obtain a rough indication of Ce.
According to NS3031 (2016) [53], the effective heat capacitance (Cegf)
of lightweight Norwegian buildings is typically within the range of
3.4-6.5 kWh/K. As the Cef is based on daily excitations of the thermal
mass of a building, it can be related to the thermal capacitance C. (at
least, up to second-order RC models without a node for internal walls,
Tm).

The long-term prediction performance is of the utmost importance if
the main application of the grey-box model is being employed in an
MPC. Equation (8) gives the method of calculating the normalized root
mean squared error (NRMSE).
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(8)

The NRMSE fitting, defined in Equation (9), is used to evaluate
prediction performance. It translates how well the response of the pre-
dicted model matches measurement data. If the fit is 100%, the model
perfectly matches the measurement data, whereas a low or negative fit is
a model of lower quality. The NRMSE fitting value is calculated based on
simulation for the deterministic model and one-day ahead prediction for
the stochastic model. In other words, for the stochastic model, the model
selection is done using the one-step ahead prediction while the ability to
perform MPC is evaluated using a one-day ahead prediction.

NRMSE;; = (1 — NRMSE) x 100% 9)

In addition to the NRMSE fitting value, the mean bias error (MBE)
defined by Equation (10) is also used as a complementary index.
Theoretically, an MBE value close to zero is best as this means that the
residual of the model has a lower mean bias error.

1 n A
MBE = sz:l (yk - yk) (10)

In practice, the results show that all our models have good MBE
properties. Therefore, this index has been used but is not reported in the

paper.
4. Results

This section is divided into three parts. Firstly, the selection of the
best model structure is presented and discussed. With the best model,
the influence of data pre-processing and the type of indoor temperature
measurement are then studied. Finally, the results are analyzed for
deterministic and stochastic models. Most of the results presented are
based on the datasets with the electric heaters (Experiments 2-4). The
description of each case presented in this section is given in Table 3.

4.1. Model selection

The results for the electric radiator and the seven models using the
volume-averaged temperature and the baseline T of 5 min are sum-
marized in Table 6 in Appendix, while the key results are presented in
Table 4.

e The first-order 1R1C model is not enough to describe the heat dy-
namics of the building for neither the deterministic nor the stochastic
models. This is confirmed by the cumulative periodogram of the
residuals in supplementary material. The cumulative periodogram
falls largely outside the confidence interval, which indicates poor
white noise properties of the residuals.

The second-order models, 2R2C and 3R2C, show significant
improvement in the NRMSE fitting compared to the first-order 1R1C
model. The cumulative periodogram of the residuals also stays
strictly within the confidence interval.
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e Although the third-order models (3R3C to 5R3C) sometimes present
better NRMSE fitting with the deterministic model, the identified
parameters are not physically plausible for the stochastic model. The
capacitance of the interior node C;j has a larger value than the value
of the internal walls node C,, which does not translate the actual
physics. Furthermore, for the 4R3C and 5R3C stochastic models, the
UA., value is identified close to 0, which also violates the reality (as
external walls are not perfectly insulated). Regarding the cumulative
periodogram of the residuals, the 5R3C is outside the confidence
interval while the 3R3C and 4R3C models remain within the confi-
dence interval but do not perform better than the second-order
models. The variance of the key parameter C. also shows that the
third-order models could lead to large values with deterministic
models, which implies that the third-order models may be over-
fitting. Further, the variance of C, for the stochastic model also shows
that the component UA;, is necessary to be modeled. Finally, the
objective function during the successive PSO iterations is plotted
along with the parameter value. The scatter plots for parameters Ce
and A; for second-order and third-order models can also be found in
supplementary material. It is observed from the scatter plots that the
optimum are flatter with third-order models, which corresponds to
lower practical identifiability of the models. It can be concluded that
the third-order models are (or are close to being) overfitted. The
fitting of validation NRMSE fitting also confirms that the second-
order model is the best trade-off between model complexity and
accuracy.

In conclusion, second-order grey-box models are most suitable for
our study as the prediction performance and the physical plausibility are
good. In addition, the dominant physical processes are properly modeled
as proven by the cumulative periodogram. The second-order models are
selected for the study as they are accurate but not overfitted. This gua-
rantees that the conclusions will not be contaminated by overfitting.
Among second-order models, the 3R2C model is taken as the baseline
case in the remainder of the paper.

4.2. Influence of the temperature measurement

The model selection is based on the volume-averaged indoor tem-
perature at 5 min. In the description of experiments, it has been shown
that the indoor temperature is dependent on the type of measurement,
see Section 2.4. Consequently, Fig. 5 and Fig. 6 compare the identified
value of two key indicators (HTC and C) for the different types of
temperature measurement, still using a sampling time of 5 min. For the
deterministic model, the difference in temperature measurements has a
limited influence on the identified model parameters. However, for the
stochastic model, the identified HTC value using the baseline 3R2C
model and the single wall-mounted temperature sensor is much larger
than the reference HTC value. Furthermore, the variance of C. is also
extremely large. Thus, the time constant of the wall-mounted sensor
dynamics has a large impact on the stochastic 3R2C model. This
conclusion is also confirmed by the cumulative periodogram of the

Table 3

Description of the datasets and their corresponding abbreviations.
Case Sensor Sensor node in model Dataset Use
T1Exp2 Volume-averaged temperature (T1) No Experiment 2 Validation
T1Exp3 Volume-averaged temperature (T1) No Experiment 3 Validation
T1Exp4 Volume-averaged temperature (T1) No Experiment 4 Training
T2Exp4 Single temperature sensor in the air (T2) No Experiment 4 Training
T3Exp4 Single wall-mounted temperature sensor (T3) No Experiment 4 Training
T4Exp4 Single wall-mounted temperature sensor (T4) Yes (1) Experiment 4 Training
TSExp5 Single wall-mounted temperature sensor (T5) No Experiment 5 Training
T6EXp5 Single wall-mounted temperature sensor (T6) Yes (1) Experiment 5 Training
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Table 4
The values and the corresponding variance of Ce.
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Model Ce Ce NRMSE Fitting NRMSE Fitting Model Ce Ce NRMSE Fitting (1- NRMSE Fitting
Value Variance (simulation) (validation) Value Variance step ahead) (validation)
[kWh/K] [kWh/K] [kWh/K] [kWh/K]
1R1Cdet 5.62 0.754 72.7% 55.1% 1R1Csto  4.78 0.437 99.0% 65.7%
2R2Cdet  6.11 0.369 93.0% 75.3% 2R2Csto  6.37 1.77 99.2% 79.2%
3R2Cdet 5.28 0.284 93.6% 79.7% 3R2Csto 4.22 0.748 99.2% 81.8%
4R2Cdet  5.40 0.430 93.5% 72.4% 4R2Csto  4.28 0.726 99.2% 81.5%
3R3Cdet  6.08 0.689 95.0% 78.6% 3R3Csto  11.9 3.92 99.2% 71.1%
4R3Cdet  3.94 0.609 95.3% 75.6% 4R3Csto  4.02 0.709 99.2% 82.7%
5R3Cdet  3.99 0.613 95.3% 76.0% 5R3Csto  5.73 0.718 99.2% 79.8%

(For the first-order 1R1C model, Ce does not exist and the value reported in the table is the value of Ci. Bold values inside the table indicates unphysical parameters.)
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Fig. 5. Comparing the HTC of the 3R2C deterministic (det) and stochastic (sto)
models using Experiment 4 and different types of temperature measurement
(5 min).

residuals in Fig. 7, which shows that the baseline 3R2C model with the
wall-mounted sensor does not describe the system dynamics (between
0.4-1.4 x 103 Hz). As introduced in Section 3.4, an adapted model with
a time constant for the sensor is added to the original 3R2C model. This
adapted model improves the results since the parameters become
physically plausible again. In addition, the cumulative periodogram of
the residuals confirms this conclusion (see dataset T4Exp4). Further-
more, the one-day ahead prediction comparison in Fig. 8 also shows the
significant improvement from the adapted 3R2C compared to the orig-
inal baseline 3R2C model. The identified time constant (t) has a value of
8.28 min, thus is larger than the sampling time. For the remainder of the
paper, the sensor node will only be analyzed for the stochastic model.

4.3. Influence of data pre-processing on grey-box modeling

Until now, the model performance has used a sampling time of 5 min
without data pre-processing, which is faster than the Nyquist sampling
frequency. The signal is sampled faster than the system dynamics so that
it is guaranteed that it does not influence the results. Consequently, the
specific influence of data-preprocessing can be identified in the present
section. The analysis of deterministic and stochastic models should be
clearly distinguished.
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Fig. 6. Comparing the Ce of the 3R2C deterministic (det) and stochastic (sto)
models using Experiment 4 and different types of temperature measurement
(5 min).
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Fig. 7. Cumulative periodogram of the residuals of the model 3R2C for
different types of indoor temperature measurement.
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Fig. 8. Comparing the one-day ahead prediction of the 3R2C stochastic (sto)
models with different types of temperature measurement, trained using
Experiment 4 and validated using Experiments 2, 3.

4.3.1. Influence of data-preprocessing on the deterministic model

Fig. 9 presents the identified parameters results for the deterministic
model using different types of temperature measurement and data pre-
processing.

The identified values of HTC show that no matter which type of
temperature is used for the identification, the HTC value is not signifi-
cantly influenced by the pre-filtering method and ACS. The value is close
to the reference value of ~83 W/K. The sampling time (Ts) does not
have a noticeable impact on the HTC value.

The identified values of C give similar conclusions as the HTC value.
The value of C, is plausible for most of the cases since it is within the
typical range (i.e., 3.4-6.5 kWh/K) given in standards [53]. The
low-pass filtering and the ACS only have a slight impact on the results.
With direct sampling, the C. values are slightly outside the reference
range when the sampling time is large (from 30 min). These conclusions
are confirmed by the analysis of the effective window area A; (related to
the influence of solar radiation).

Regarding the simulation performance of the deterministic model,
the influence of data pre-processing and the type of temperature mea-
surement are also limited as are the identified parameters. Conse-
quently, the simulation performance is only demonstrated for the
volume-averaged temperature (see Fig. 10).

Several main conclusions can be drawn concerning the deterministic
model. They are in good agreement with the findings of Yu et al. [26]
using virtual experiments. Firstly, the pre-processing of data does not
have a considerable influence on the deterministic model. Secondly, the
pre-filtering technique could slightly contribute to a more stable esti-
mation of the values if the sampling time Ty is large (>30 min). Thirdly,
the influence of data pre-processing on simulation performance is
negligible.

4.3.2. Influence of data-preprocessing on the stochastic model

As shown in Fig. 11, the data pre-processing has a more substantial
influence on the identified HTC value for the stochastic model. The ACS
can contribute to preventing the HTC value from becoming non-physical

10
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(stays close to the target reference value) for large sampling times. If the
filter and the ACS are applied together, the identified HTC value remains
stable and close to the reference value for the stochastic model. How-
ever, the identified HTC values are often non-physical using the baseline
3R2C model when the dynamics of the wall-mounted temperature sen-
sors are not modeled, even when the sampling time becomes large.
Again, only the adapted 3R2C model with a sensor node gives plausible
HTC values. This result is counterintuitive. In Section 4.2, the time
constant of the wall-mounted sensor has been estimated to be about 8
min. Therefore, it could be expected that the effect of the sensor dy-
namics would be filtered out by taking a larger sampling time (>15
min). However, this is not the case. This last conclusion is much clearer
when analyzing Ce.

The identified C, for the stochastic model without and with ACS are
shown in Fig. 11, respectively. This confirms the positive effect of ACS
for large sampling times. For cases without ACS, the identified C, value
and variance become non-physical when the sampling time is larger. The
Ce values from volume-averaged temperature (T;) and the single wire-
less temperature (T2) sensors remain physically plausible for the large
sampling times if the filter and ACS are applied simultaneously.
Regarding the wall-mounted sensor, the baseline 3R2C model (T3) does
not give plausible C, values even for large sampling times. The low-pass
filtering or ACS does not improve the performance. This confirms that,
even though the sensor time constant (~8 min) is significantly shorter
than the sampling time, its influence is not filtered out and it still im-
pacts the performance of the stochastic model. For the adapted model
(T4), the Ce value remains physically plausible for large sampling times
when the ACS and the low-pass filter are applied, just like the datasets Ty
and T». It is worth mentioning that the C, values from a single sensor are
generally larger than those identified from the volume-averaged
temperature.

At this stage, the influence of the ACS does not need to be further
demonstrated. Therefore, the A; values for the stochastic model are only
shown in Fig. 11 with ACS. The results for A; are consistent with the
results for C. and confirm the previous conclusions.

The identified t values for the adapted 3R2C model with a sensor
node can be found in Table 5. The sampling time (Ts) of 5 min is shorter
than the identified time constant of about 8 min. However, when the T
becomes significantly larger than 8 min, T cannot understandably be
identified at a lower value than Ts. In other words, a sound conclusion is
that if the identified sensor time constant is to be physically plausible,
the data should be sampled at a higher frequency than the sensor
dynamics.

Fig. 12 compares the ability of the model to perform MPC using the
one-day ahead prediction performance for the stochastic model identi-
fied using the volume-averaged temperature (T7). Large sampling times
have a limited effect on the one-day ahead prediction performance. The
low-pass filter increases the one-day ahead prediction mainly for the
validation datasets using Experiment 2. While the ACS improves the
physical plausibility of the model parameters for large sampling times,
its influence on the one-day ahead prediction performance is not sys-
tematic: it has a slightly positive impact on Experiments 3 and 4 but a
negative influence on Experiment 2.

For the case of wall-mounted temperature sensors, the improvement
from the adapted model for the one-day ahead prediction performance is
significant. The results are shown in Fig. 13 and Fig. 14. If the same pre-
processing is applied (i.e., sampling time and filtering method), the
NRMSE fitting from the adapted 3R2C stochastic model with sensor
node (T4) is always higher than the baseline 3R2C stochastic model
without sensor node (T3). Using the wall-mounted sensor, the influence
of large sampling time is considerable. However, this effect is reduced
using low-pass filtering. The influence of ACS is still not systematic.
Nevertheless, for the adapted model, the ACS systematically improves
the prediction performance.

To sum up, except for wall-mounted sensors, large T have a limited
effect on the prediction performance, which is in good agreement with
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Fig. 9. Identified HTC, Ce and Ai of the 3R2C deterministic model for Experiment 4 with different types of temperature, data pre-processing techniques.

the findings of Yu et al. [26]. For the wall-mounted sensor, additional physical plausibility of the parameters.
measures should be taken to conserve the prediction performance with
large T. As for the physical plausibility, the low-pass filtering improves 4.3.3. Stochastic model with hydronic radiator

the prediction performance. However, the positive influence of the ACS As previously mentioned, the air temperature was only measured
for Ty is not as systematic for the prediction performance as it was for the using the wall-mounted sensors for the experiment using the hydronic
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Fig. 10. Comparison of the simulation performance of the deterministic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and
validated using Experiments 2, 3.
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Fig. 11. Identified HTC, Ce and Ai of the 3R2C stochastic model for Experiment 4 with different types of temperature measurement and data pre-

processing techniques.

radiator. As it has been proven that the sensor node was necessary for
the modeling, only the performance of the adapted model is analyzed.
Unlike the electric heater, the thermal dynamics of the hydronic radiator
are significant (see Section 2.4). The analysis of the measured inlet and
outlet temperatures of the hydronic radiator showed that its time

Table 5
Identified time constant (t) of the 3R2C adapted stochastic model for Experi-
ment 4 with different data pre-processing techniques.

Sampling DS MA FIR
time
. T T T T T T

[min] . . .
value variance value variance value variance
[min] [min] [min] [min] [min] [min]

5 8.28 0.420 - - - -

15 16.4 1.82 12.9 1.21 11.6 1.04

30 67.9 62.1 26.2 3.59 27.6 4.08

60 97.6 19,465 79.1 1031 76.5 223

12

constant is about 7 min. A priori, like the wall-sensor, it is expected that
the hydronic radiator dynamics should influence the model perfor-
mance, at least for a sampling time of 5 min (<7 min). However, the
wall-mounted temperature sensor has a time constant of about 8 min.
Consequently, the dynamics of the hydronic radiator cannot be properly
captured by a grey-box model since the time constant of the wall-
mounted sensor is comparable (or slightly larger) than the time con-
stant of the hydronic radiator. The analysis of the cumulative periodo-
gram (not reported here for the sake of the conciseness) shows that the
adapted 3R2C can model the building heated using the hydronic radi-
ator without the need to add a specific capacitance to model the hy-
dronic radiator. In addition, preliminary results with an additional
capacitance proved that the resulting model would be overfitted.

The experiments with the hydronic radiator and the electric heater
have been performed in different years and different months of the
heating season, leading to different sun elevations between the experi-
ments. The identified effective window area A; is thus expected to be
significantly different for Experiment 5 and Experiments 2 to 4. Thermal
properties that are intrinsic to the building fabric and less dependent on
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Fig. 12. One-day ahead prediction of the stochastic 3R2C model using
Experiments 2, 3.

the volume-averaged temperature (T1), trained using Experiment 4 and validated using
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Fig. 13. One-day ahead prediction of the baseline stochastic 3R2C model using a single wall-mounted sensor (T3), trained using Experiment 4 and validated using

Experiments 2, 3.

the outdoor conditions are used to analyze the model performance in
Experiment 5, namely the HTC and C, (Fig. 15). The identified HTC is
still close to the reference value. Unlike the experiments with the electric
heater, there is no significant difference between the baseline and
adapted 3R2C models and the HTC remains plausible for large sampling
times (with ACS).

However, the improvement resulting from the adapted model and
ACS is more visible when analyzing Ce. Again, the HTC translates into a
steady-state performance while the capacitances are inherently related
to the building dynamics. Conclusions with the hydronic radiator are in
line with the conclusions using Experiment 4 with the electric heater.
With the baseline 3R2C model, the estimated Ce is entirely non-physical
even using pre-filtering and ACS. The results are noticeably improved
with the adapted 3R2C model with a sensor node. If the pre-filtering and

13

ACS are applied, the C, value strictly stays within the reference range no
matter how large the sampling time is. For Experiment 5, it is worth
mentioning that the quality of the adapted 3R2C model is marginal as
the variance C, is sometimes very large. Nevertheless, this does not
impact the main conclusion. The experiment with the hydronic radiator
confirms the positive influence of the adapted model with 1, the low-
pass filtering and the ACS for large sampling times.

5. Discussion

This paper analyzes the influence of data pre-processing and sensor
dynamics on the grey-box modeling of the building thermal dynamics
using the MATLAB system identification toolbox. Some limitations to
the work can be listed and discussed:
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Fig. 14. One-day ahead prediction of the adapted stochastic 3R2C model using a single wall-mounted sensor (T4), trained using Experiment 4 and validated using

Experiments 2, 3.
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Fig. 15. HTC and C. for the 3R2C stochastic model using Experiment 5 and different data pre-processing techniques.

Important conclusions based on virtual experiments have already
been drawn in the previous study of Yu et al. [26]. However, field
measurements are different from virtual experiments. The paper
succeeded in extending the conclusions from virtual experiments to a
real test case with field measurements. However, more test cases are
needed to have a generalization of the conclusions. It has been
decided to limit the paper to a single test case. The experimental
setup and the methodology should be sufficiently described to make
the results transparent and reproducible. For the sake of conciseness,
this limits the paper to a single test case.

The test case is a super-insulated building with balanced mechanical
ventilation and an energy-efficient heat recovery unit. This enabled
the building to be modeled as a single thermal zone. This test case is
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relatively specific as most of the existing houses in the Norwegian
building stock do not have these thermal properties. However, it is
expected that the conclusions of the paper regarding data pre-
treatment are not affected by the insulation level and type of
ventilation.

The paper considers that the data pre-treatment is performed equally
for all input and output data. This is possible when the data pre-
treatment is performed explicitly by the modeler. However, when
the data pre-treatment is performed implicitly by the hardware (i.e.,
the sensor or the DAQ), this pre-treatment can affect the input and
output data differently. In this case, additional data pre-treatment
techniques should be considered (such as the identification of lag).
The conclusions of the paper need to be extended to this case as well.
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e The analysis is based on the MATLAB system identification toolbox,
where the stochastic equations are written in innovation form. For
the generalization, results should be reproduced in other system
identification tools and formulations, such as CTSM-R [54].

6. Conclusion

This study is based on two experimental setups using two different
space-heating emission systems, namely an electric heater and a hy-
dronic radiator. The pre-processing techniques include low-pass filtering
(using MA or FIR), the sampling time (Ts) and the application of anti-
causal shift (ACS). Three different types of temperature measurements
are analyzed to investigate the influence of the sensor selection and
dynamics (i.e. volume-averaged air temperature, single temperature
sensor without casing and single wall-mounted sensor).

To analyze the specific influence of the data pre-processing, it is
important to ensure that the model performance is not polluted by other
phenomena, such as overfitting or poor model fidelity. Therefore, the
study starts by selecting a suitable structure for the grey-box model and
proves that a mono-zone second-order model is an appropriate trade-off,
with (1) a good prediction performance and (2) good interpretability of
the physical parameters of the model (i.e., physical plausibility) (3)
without beginning to be overfitted. Consequently, a mono-zone 3R2C
model is taken as the baseline structure to illustrate the key research
questions of the paper. Conclusions are presented separately between
deterministic and stochastic models.

Deterministic model:

e Yu et al. [26] used virtual experiments and the data pre-processing
has a limited influence on the model performance. This is
confirmed using field experiments. In addition, the sensor thermal
dynamics also has a limited influence on the deterministic model
performance.

Stochastic model:

Yu et al. [26] used virtual experiments and the parameters became
non-physical without ACS for large sampling time (Ts). On the con-
trary, large sampling times did not alter the simulation performance
significantly. Although the ACS tends to improve the physical plau-
sibility of the model parameters with Ts, in general, it had a negative
influence on the simulation performance of the model.

These results are partly confirmed using field measurements. Like in
Yu et al. [26], large T can cause the parameters to become
non-physical without ACS. ACS is excessively beneficial to guarantee
the physical plausibility of parameters, making the identified pa-
rameters insensitive to the sampling time. Like in Yu et al. [26], large
Ts has a limited effect on the prediction performance for the tem-
perature sensors without casing. However, for the wall-mounted
sensor, pre-filtering and sometimes ACS should be used to converse
the prediction performance at large Ts. Like Yu et al. [26]
pre-filtering has a beneficial influence on the model performance but
not in a dominant way. Unlike Yu et al. [26], the influence of ACS on

Appendix A. Supplementary data
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prediction performance is most often beneficial in our study. At this
stage, it can be concluded that the influence of the sampling time and
ACS on the prediction performance is not systematic (i.e., sometimes
positive or negative).
The results for stochastic models depend on the type of temperature
measurement. Firstly, the cases with temperature sensors with
negligible thermal dynamics (i.e., free-standing air temperature
sensor without casing) are analyzed. Even though the vertical ther-
mal stratification is significant, there is only a slight reduction in the
model performance when moving from a volume-averaged mea-
surement to a single sensor located at mid-height in the room. Sec-
ondly, when the temperature sensor is the wall-mounted
temperature sensor, an adapted model with time constant dynamics
for the sensor is needed to obtain a physically plausible estimation of
the parameters. This is an important conclusion as most buildings are
equipped with wall-mounted temperature sensors. To limit the in-
vestment, the number of sensors should also be limited, making a
volume-averaged measurement expensive.
e The dynamics of the hydronic radiator (with significant thermal
mass) are not necessary to be modeled if the time constant of the
measurement device is larger than that of the hydronic radiator.

As the article is based on a single test case, additional research on
real buildings is needed to generalize the conclusions. These findings
provide practical guidelines to identify the thermal dynamics of build-
ings using grey-box models and field measurement data.
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Fig. 16. Grey-box model structures except for the most complicated SR3C model.

Table 6
Model identification results of the candidate models with 5 min data and volume-averaged temperature (T1), values highlighted with bold color are non-physical
values.

Model UAea [W/K] UAje [W/K]  UAjm [W/K]  UAins[W/K]  UA[W/K]  UAas [W/K]  UAes [W/KT  UAjs [W/K] Ce [kWh/K] C; [kWh/K]
1R1Cdet - - - - 106 - - - - 5.62
2R2Cdet 114 826 - - - - - - 6.11 0.749
3R2Cdet  80.2 876 - 23.0 - - - - 5.28 0.767
4R2Cdet  52.1 - - 51.5 - - 2558 1345 5.40 0.781
3R3Cdet 153 404 565 - - - - - 6.08 0.961
4R3Cdet 104 303 687 26.5 - - - - 3.94 0.909
5R3Cdet 102 686 - - 28.1 331 4694 3.99 0.908
1RICsto - - - - 109 - - - - 4.78
2R2Csto 109 1058 - - - - - - 6.37 1.24
3R2Csto  17.1 868 - 63.5 - - - - 4.22 1.15
4R2Csto  0.000 1181 - 78.5 - - - 3342 4.28 1.11
3R3Csto 123 552 763 - - - - - 11.9 1.23
4R3Csto  5.40 692 346 71.4 - - - - 4.02 1.21
5R3Csto  0.000 - 375 - - 108 8492 1087 5.73 1.19
Model Cm [kWh/K] A [m?] A [m?] Am [m?] As [m?] alpha [] MBE NRMSE (one- NRMSE HTC [W/K]
step) (prediction)
1R1Cdet - 2.99 - - - - 0.0010 - 72.7% 105
2R2Cdet - 2.96 0.000 - - - 0.0007 - 93.0% 100
3R2Cdet - 2.62 0.000 - - - 0.0008 - 93.6% 96.4
4R2Cdet - 2.78 - - 0.000 - —0.0033 - 93.5% 103
3R3Cdet  2.09 3.82 - 0.000 - 0.500 ~0.0017 - 95.0% 111
4R3Cdet  2.58 3.19 - 0.000 - 0.500 0.0025 - 95.3% 104
5R3Cdet  2.54 - - 0.000 3.21 0.500 —0.0017 - 95.3% 106
1RICsto - 3.39 - - - - —0.0008 99.0% 73.4% 109
2R2Csto - 3.07 0.000 - - - 0.0000 99.2% 87.3% 98.8
3R2Csto - 1.56 0.122 - - - 0.0000 99.2% 87.2% 80.3
4R2Csto - 1.09 - - 0.686 - 0.0001 99.2% 86.6% 78.5
3R3Csto  1.16 3.07 - 0.819 - 0.500 0.0002 99.2% 80.6% 101
4R3Csto  0.042 1.44 - 0.000 - 0.500 0.0001 99.2% 86.1% 76.8
5R3Csto  0.038 - - 0.078 2.67 0.500 0.0001 99.2% 88.9% 108
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