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A B S T R A C T   

A grey-box model is a combination of data-driven and physics-based approaches to modeling. For applications in 
buildings, grey-box models can be used as the control model in model predictive control (MPC) or to characterize 
the thermal properties of buildings. In a previous study using data generated from virtual experiments, the in
fluence of data pre-treatment on the performance of grey-box models has been demonstrated. However, field 
measurement differs from data generated using building performance simulation (BPS). This is because the 
precision and accuracy, the location, and the dynamics of the sensors could be different. Consequently, this paper 
extends previous results and conclusions using a real test case of a highly-insulated residential building. The 
results confirm that data pre-processing has a minimal influence on the identified results (parameter values and 
simulation performance) for deterministic models. On the contrary, data pre-treatment influences the perfor
mance of stochastic models as follows. Firstly, large sampling time (Ts) can cause the parameters to become non- 
physical and can sometimes reduce the one-day ahead prediction performance. With large Ts, the anti-causal 
shift (ACS) proves to be beneficial to keep the parameters physically plausible while low-pass filtering can 
also contribute but to a lesser extent. With large Ts, ACS does not guarantee a higher one-day ahead prediction 
performance for stochastic models, whereas pre-filtering generally has a positive impact. Secondly, for the 
stochastic model, the sensor dynamics should be modeled if the sensor has a noticeable time constant to guar
antee the physical plausibility of the parameters. Thirdly, the dynamics of the hydronic radiator do not need to be 
modeled if the time constant in the temperature sensors is larger than the radiator. These findings provide 
practical guidelines for grey-box modeling of buildings with field measurement data.   

1. Introduction 

The mathematical modeling of the thermal dynamics of a building is 
typically divided into three main categories [1]: white -, black-, and 
grey-box models. White-box models are based on physical laws (e.g. 
mass-, energy- and momentum balance equations). The white-box 
models are generally mathematically complex but have high accuracy. 
Black-box models are pure data-driven methods based on the measured 

time-series data from the system. This method needs sufficient training 
data to guarantee the accuracy of the model [2]. Grey-box modeling is a 
combination of these two techniques. This method takes the dominant 
physical processes to construct the model structure of the system and 
then fits the model parameters with the measurement data. Lumped 
resistance and capacitance models are used (i.e. RC models) to construct 
the grey-box model structure of a building, which means the thermal 
dynamics of the building are expressed by an electric circuit analogy [3, 
4]. Grey-box models are said to have better extrapolation properties 
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than black-box models [5]. In addition, they have been widely applied to 
solve problems in building technologies, such as building load estima
tion, control and optimization, and building-grid integration [6,7]. The 
paper focuses on two main applications of grey-box models which are 
model predictive control (MPC) and characterization of the thermal 
properties of buildings using field measurements [6,8]. 

1. The emergence of MPC in buildings is related to the concept of en
ergy flexibility and demand response (DR). The conventional electric 
energy system is undergoing dramatic changes due to the steadily 
rising share of renewable energy sources (RES). Power generation 
from RES is often decentralized and intermittent, which may cause 
considerable volatility to the electric grid. The power imbalance in 
the supply and demand sides can have severe implications for power 
quality and reliability [9]. Therefore, more flexible resources are 
needed to enable increasing penetration of intermittent RES. De
mand response (DR) is gaining more attention in power system op
erations recently, driven by the smart grid concept [10]. Demand 
response means changes in energy use by the end-use customer from 
their normal consumption patterns in response to a specific penalty 
signal (e.g. price signal, CO2 intensity factor for electricity signal) 
[10–13]. DR is closely related to the concept of energy flexibility 
defined by the IEA EBC Annex 67 as the ability of a building to 
manage its demand and generation according to local climate con
ditions, user needs and grid requirements [14]. Model predictive 
control (MPC) is considered a suitable technique for performing DR 
in a building [7,15] or for activating building energy flexibility [14]. 
Regarding space-heating, the thermal mass of a building can be a 
significant short-term heat storage to perform DR [16–20]. The 
exploitation of such thermal storage requires the indoor temperature 
to fluctuate within limits that are acceptable for the occupants. 
Previous studies have identified significant DR potential in using 
economic model predictive control (E-MPC) to exploit the thermal 
mass of residential buildings, see e.g. Refs. [21–23]. In these appli
cations, grey-box models should enable adequate prediction to ach
ieve good control performance.  

2. Developing a suitable grey-box model with physically plausible 
(interpretable) parameters is appreciated from the building analysis 
point of view [19]. Physically reasonable parameters in grey-box 
models could contribute to characterizing the thermal properties of 

a building using field experiments, such as the overall heat transfer 
coefficient (HTC). 

Data can be processed (or altered) by sensors, the data acquisition 
system (DAQ) or by the modeler before being used for model identifi
cation. Data pre-processing (or data pre-treatment) is acknowledged to 
have a key influence on the model identification results [24]. For 
instance, Ljung et al. [25] have analyzed this theoretically and demon
strated the strong influence of the sampling time. However, this topic 
has hardly been addressed in the specific field of grey-box models for 
building thermal dynamics. One exception is Madsen et al. [8] that 
mentioned the importance of data pre-processing in their guidelines, but 
they did not discuss the topic in detail in their report. Therefore, the 
main objective of the paper is to systematically investigate the influence 
of different data pre-processing techniques on the performance of 
grey-box models for the building thermal dynamics, with MPC and the 
physical plausibility of parameters in focus. In the past, this effect has 
been studied in Yu et al. [26] with deterministic and stochastic models. 
However, they used data generated by virtual experiments, namely 
multi-zone simulations using the building performance simulation (BPS) 
software IDA ICE [27]. The data pre-processing methods applied in this 
study are the sampling time, low-pass filtering and the anti-causal shift 
(ACS) [25]. ACS corresponds to a shift of the input data one step ahead 
(also equivalent to a backward shift of the output). Several main con
clusions have been demonstrated in this previous study [26]: 

• For deterministic models, the data pre-processing has limited influ
ence on the identification results. However, the values of the pa
rameters are strongly dependent on the training dataset and can 
sometimes be physically non-plausible.  

• For stochastic models, the parameters are less dependent than the 
deterministic models on the training dataset. However, they become 
non-physical without ACS for large sampling time (Ts > 15 min). 
Large Ts does not alter the simulation performance of the stochastic 
model. ACS proved to be extremely beneficial to guarantee the 
physical plausibility of parameters with large Ts. Nevertheless, it 
generally has a negative influence on the simulation performance of 
the model. 

As these important conclusions are based on virtual experiments, the 
first objective of the paper is to compare these conconclusions to a real 
test case based on field measurements. Field measurements deviate from 
virtual experiments in the following way:  

• In reality, sensors have finite precision and accuracy, while the 
temperature and power data exported from BPS is perfect (i.e., noise- 
free observations).  

• In most BPS software, the air volume of each room is supposed to be 
isothermal. In reality, the temperature field in a room is not uniform. 
Two important effects should be considered. Firstly, the room air can 
present significant temperature stratification, especially when the 
heat emitter is close to maximum power. Secondly, the sensors are 
usually mounted on a wall in a casing. For sudden changes in the 
indoor temperature, the measured value with a wall-mounted sensor 
may thus differ from the real air temperature. The thermal dynamics 
of the sensor due to the casing can also be seen as a form of implicit 
data pre-treatment if the sensor dynamics are not modeled. 

This paper uses measurement data from an experimental building, 
the ZEB Living Lab [28,29] to compare the conclusions that were orig
inally based on virtual experiments [26]. Three complete datasets of the 
indoor temperature corresponding to different sensor locations are 
available:  

• Several temperature sensors without casing are mounted at different 
heights on a vertical bar located in the middle of different rooms. The 

Nomenclature 

RES Renewable Energy Sources 
DR Demand Response 
MPC Model Predictive Control 
BPS Building Performance Simulation 
RC Resistance and Capacitance 
SNR Signal to Noise Ratio 
PRBS Pseudo-Random Binary Signal 
PI Proportional Integral 
NRMSE Normalized Root Mean Squared Error 
MBE Mean Bias Error 
PSO Particle Swarm Optimization 
ACS Anti-Causal Shift 
DS Direct Sampling 
MA Moving Average 
FIR Finite Impulse Response 
Det Deterministic Model 
Sto Stochastic Model 
HTC Heat Transfer Coefficient 
HC Heat Capacitance  
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averaging of these measurements gives an approximation of the 
volume-averaged indoor air temperature, which is a good represen
tation of the indoor air temperature Ti of a mono-zone model (i.e. one 
zone for the entire building). In addition, the volume-average indoor 
temperature is less sensitive to the vertical temperature stratification 
than the measurement from a single sensor. 

• For market penetration, it is better to limit the number of tempera
ture sensors to one in each room. Thus, it is important to investigate 
the possibility of identifying a proper grey-box model with mea
surements from a single temperature sensor. Firstly, one temperature 
sensor is located on a vertical bar at a medium height in the living 
room. The stratification effect at mid-height should be lower than the 
top and low locations in the room. Secondly and probably the most 
realistic configuration, another temperature sensor is mounted on a 
wall at the same mid-height location as the previous sensor (placed 
on the bar). 

The second objective of the paper is to analyze how the type of in
door temperature measurement influences the performance of the grey- 
box models. 

The main objective is to identify the specific influence of different 
data pre-processing techniques on the grey-box model performance. 
Other phenomena that could have an impact on the model performance, 
such as overfitting, should be removed from the analysis. Therefore, 
model structure selection is performed in detail in this paper before 
starting to analyze the influence of the data pre-treatment. It starts with 
a review of the literature regarding the structure of grey-box models. 
This results in the selection of a set of structures to be evaluated. The 
evaluation includes the analysis of structural and practical identifiability 
of the selected models, their prediction performance and physical 
plausibility of the parameters. Checking structural identifiability is the 
prerequisite in the model identification process [30,31]. This property 
guarantees that the parameters can be uniquely determined from the 
input-output data under ideal conditions of noise-free observations and 
error-free model structure. The structural identifiability of the candidate 
models in this study is verified using DAISY software [30]. However, 
field measurement data always contain noise and error, which chal
lenges the practical identifiability of the model. Therefore, the predic
tion performance and the physical plausibility of parameters are taken 
as the criteria for the model selection. Finally, for stochastic models, a 
cumulative periodogram is used as an additional criterion to prove that 
the model is complex enough to capture the building dynamics. 

The remainder of the paper is structured as follows. Section 2 pro
vides information on the experimental setup, which includes the 
building geometry, measurement devices, the definition of test cases and 
the boundary conditions. Section 3 describes the methodology of this 
study, including the grey-box model structure and data pre-processing 
techniques used for this study. The algorithm to identify the grey-box 
model parameters is also outlined, followed by the definition of key 
performance indicators (KPIs). Section 4 gives the results and is divided 
into three main aspects. The most suitable model structure is selected 
with the original data with 5 min sampling time and the volume- 
averaged temperature. Then, the influence of data pre-processing and 
the sensor selection is presented. Finally, conclusions are presented in 
Section 5. 

2. Description of experiments 

2.1. Case building 

The experiments performed in this study were carried out in the ZEB 
Living Lab, a single-family, zero-emission house with a heated floor area 
of about 100 m2 on the campus of the Norwegian University of Science 
and Technology (NTNU) in Trondheim. The building envelope has a 
wooden frame with mineral wool measuring 35–40 cm and a glazing 
ratio of 0.2. The space-heating can be floor heating, a central radiator, or 

ventilation air. The ventilation system is equipped with a heat recovery 
unit. By operating the doors in the building, four zones can be created 
(bedroom west, bedroom east, bathroom, and living areas). The 
appearance of the building and the internal layout of the Living Lab is 
shown in Fig. 1. This study is based on two sets of experiments in this 
building with different space-heating emission systems and different 
periods of the space-heating season. Data from using two different heat 
emitters are used to make the conclusions more general. 

The first set of experiments (from the 18th April to 15th May 2017) 
used an electric heater for space-heating. Detailed information on the 
measurement setup and data can be found in previous work [28,32]. The 
corresponding length of these three experiments are 6 days, 11 days and 
7 days, respectively. The electric heater of 2.6 kW was placed in the 
center of the building (the heater is marked in red in Fig. 1 (b)). A 
pseudo-random binary signal (PRBS) has been applied to the electric 
heater to excite the thermal dynamics of the building. PRBS is a periodic 
and deterministic signal with white noise properties and a high 
signal-to-noise ratio (SNR). The PRBS signal activates the dynamic sys
tem at a broad range of frequencies. 

Four experiments were carried out, and only the last three were 
successful. The successful experiments are named Experiments 2, 3, and 
4 (i.e., Experiment 1 was discarded). The dataset has a time interval of 5 
min. The measurements include the outdoor temperature, indoor air 
temperatures, global solar irradiation and electricity consumption, 
including the radiator power (Qh). To avoid modeling the air-handling 
unit (AHU), the ventilation losses from the mechanical ventilation are 
introduced as one input to the grey-box model in this study. These 
ventilation losses are explicitly pre-calculated with the measured tem
perature difference between the supply and exhaust ventilation air 
combined with the measured airflow rate (constant air volume, CAV). 
The electric heating system has negligible thermal inertia compared to 
the building envelope, so it is assumed that the dynamics of the radiators 
play a limited role. Experiments 2 and 4 were conducted with internal 
doors opened, which theoretically should lead to a more uniform spatial 
distribution of the air temperature inside the building while all the doors 
were closed in Experiment 3. Air was pre-heated using a heating coil in 
Experiment 4 only. The building is unoccupied in all the experiments, 
but electric dummies operated by a control schedule have been used 
leading to realistic internal gains. 

2.2. Experiment with the hydronic radiator 

The experiment with the hydronic radiator was initially performed to 
investigate cost-effective MPC implementation (E-MPC) with control of 
the hydronic radiator in a Norwegian zero-emission building (Living 
Lab) [29]. The experiment lasted for approximately one month (from 
mid February to mid March 2017), with an 18-day excitation phase and 
an E-MPC operation phase of two weeks. A randomly generated binary 
signal switching the radiator temperature set-point between 21 ◦C and 
24 ◦C was created to excite the thermal dynamics of the building and 
collect measurements for training the model. This new training dataset 
is based on six days in February and is named here as Experiment 5. The 
dataset has a time interval of 5 min. 

The hydronic radiator has a rated power of 4.7 kW (at rated tem
perature 75 ◦C/65 ◦C) and was in the same place as the electric heater. 
The supply water temperature was maintained at about 55 ◦C leading to 
a maximum radiator power of 2.5 kW. The thermostatic valve in the 
radiator adjusts the mass flow using a proportional-integral (PI) 
controller to track the set-point temperature. Compared to the electric 
heater, the thermal mass of the hydronic radiator with 113 kg of steel 
cannot be neglected. The power delivered to the hydronic radiator (Qh) 
is measured by an energy meter based on the difference between supply 
and return temperatures. When the hydronic radiator is switched on, the 
initial water temperature in the radiator is close to the indoor air tem
perature. Due to the thermal mass of the radiator, it takes time for the 
return temperature to heat up and reach steady-state (when the power 
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delivered to and emitted by the radiator are equal). This makes a large 
difference in supply and return temperatures at the beginning, leading to 
a very high start-up peak for Qh. The maximum emitted power of the 
radiator in steady-state is around 2.5 kW, while the maximum delivered 
power during start-up periods is around 4.0 kW. This confirms that the 
thermal dynamics of the hydronic radiator are significant. The summary 
of all the experiments used in this study is given in Table 1. 

2.3. Indoor temperature measurement 

In the experiments with the electric heater, PT100 sensors with an 
accuracy of ±0.1 K are placed at different locations in the building; see 
details in Ref. [28]. This leads to the definition of three datasets:  

• Two available datasets correspond to different placement of PT100 
temperature sensors without casing and with wireless transmitters. 
They are placed in a vertical bar in the middle of the two living rooms 
(see green dots in Fig. 1 (b) and Fig. 2 (a)). For each bar, the height of 
the six sensors is 0.18 m, 0.95 m, 1.6 m, 1.7 m, 2.3 m and 3.4 m, 
respectively. The volume-averaged temperature of the building is 
calculated using the measurement from all the sensors placed in the 
vertical bars and evaluated using the volume average at each hori
zontal layer. The single sensor without casing dataset corresponds to 
the measurement at 1.6 m in the living room south. The height of 1.6 
m is close to the middle height of the building, where the influence of 
stratification is expected to be minimal (meaning that the measured 
temperature at 1.6 m is the closest to the volume-averaged 
temperature).  

• The third dataset is based on PT100 sensors mounted on the wall in a 
casing (see the orange dot in Fig. 1 (b) and Fig. 2 (b)). The height of 
the wall-mounted sensors is 0.1 m, 0.8 m, 1.6 m, 2.4 m and 3.2 m, 
respectively. The third dataset corresponds to the measurement of a 
single wall-mounted sensor mounted in the south of the living room at 
the height of 1.6 m. 

In the experiments with the hydronic radiator, only the temperature 
measurements from the wall-mounted temperature sensor are available. 

Fig. 3 shows the temperature reading from the wireless temperature 
sensors with different heights (0.18 m, 1.6 m and 3.4 m) and the wall- 

mounted temperature sensor (1.6 m) against the volume-averaged 
temperature. The stratification of the temperature of the wireless tem
perature sensors at different heights can be observed. The stratification 
gets larger when the solar radiation or the radiator power is large. The 
reason for choosing the sensor in the south was to capture the influence 
of solar radiation. The thermal dynamics of the wall-mounted sensor can 
also be observed. The reading from the wall-mounted sensor is smoother 
compared to the volume-averaged temperature and the readings from 
the single wireless temperature sensors. 

3. Methodology 

3.1. Grey-box model structure 

The structure of the grey-box models is derived from the conserva
tion of energy. The physics modeled by the grey-box models is the heat 
transfer between the building and its outdoor environment, the solar 
radiation and internal gains. 

The ZEB Living Lab is super-insulated with an efficient heat recovery 
of the ventilation air. These two points lead to limited temperature 
differences between rooms [33] (compared to the temperature differ
ence between indoor and outdoor air) even if internal doors are closed. 
Consequently, the building can be modeled as one thermal zone (i.e., the 
mono-zone model with a unique node to represent the indoor temper
ature). Previous studies [29,32,34] confirmed that a mono-zone grey-
box model is able to make an accurate prediction on the air temperature 
in the ZEB Living Lab, for closed and open internal doors. 

Grey-box modeling is a very common approach and a considerable 
amount of research has already been applied to this method. In their 
study, Viot et al. [35] provided a comprehensive list of research papers 
on MPC that used RC models. Bacher and Madsen [36] identified a 
suitable model using data obtained from an unoccupied office building. 
The probability ratio tests were used to analyze models of different or
ders. The results showed that increasing the model order from the 
third-order does not substantially improve the results. In Ref. [37], 
Berthou et al. found that the second-order model performs best for 
occupied office buildings. Braun et al. [38], Hu et al. [39] and Goyal 
[40] used the second-order model as the base component for the 
multi-zone model of the building. It was concluded that the 

Fig. 1. View of the ZEB Living Lab (a) and floor plan of the ZEB Living Lab with temperature sensor location (b).  

Table 1 
Summary of the four experiments, “Full set” means all measurements of volume-averaged, single sensor (no casing), wall-mounted sensor are available.  

Experiments Radiator Door Sampling time Period Use Temperature Sensor 

2 Electric Open 5 min 18/04–24/04 (2017) Validation Full set 
3 Electric Closed 5 min 27/04–08/05 (2017) Validation Full set 
4 Electric + AHU Open 5 min 08/05–15/05 (2017) Training Full set 
5 Hydronic Open 5 min 22/02–27/02 (2019) Training Wall-mounted  
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Fig. 2. Wireless temperature sensors (a) and wall-mounted temperature sensors (b).  

Fig. 3. Comparison of different indoor temperature sensors, global solar irradiation on a horizontal plane and heating power of the electric heater for Experiment 4.  

Fig. 4. Structure of the 5R3C model.  
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second-order model is sufficient for good prediction results for indoor 
temperature and heating power by Palomo Del Barrio et al. [41] and 
Reynders et al. [42]. Brastein et al. [43] showed that deterministic 
grey-box models at second-order could face the problem of practical 
identifiability. Yu et al. [34] proposed two grey-box model structures 
derived from VDI 6007 [44] and ISO 13790 [45]. The results were that 
with few measurements and a large number of unknown parameters, the 
identified parameters could easily become non-identifiable. Further
more, due to overfitting and convergence issues, Reynders et al. [42] 
concluded that heat flux measurements were needed to ensure observ
ability for higher-order models (i.e. fourth- and fifth-order models). 
Thus, based on these previous studies, our paper only considers the 
model structure up to the third-order. 

As a result, seven mono-zone model structures limited to third-order 
have been taken from the existing literature [36,42,46]. The selection 
process will determine the best model structure to be used to investigate 
the specific influence of data pre-processing. These seven models 
correspond to different combinations of RC components and splitting 
factors for the distribution of internal gains between the nodes. Ac
cording to report [28], some sensors in the ZEB Living Lab at specific 
locations were directly exposed to solar radiation at certain periods of 
the day, which makes some of the measurements an unsatisfactory 
representation of the air temperature. The dataset in Experiment 4 with 
open internal doors is chosen as the training dataset for the case with the 
electric heater. Only the 5 min dataset is used for the model selection to 
avoid aliasing errors. The datasets in Experiments 2 and 3 were used as 
the validation datasets to analyze the prediction performance of the 
models. Structural identifiability is a prerequisite for system identifica
tion [47], which refers to the theoretical possibility of determining the 
parameter values from the input and output data. Thus, the structural 
identifiability of the candidate model structures has been tested by the 
DAISY software [30,48] before implementing the identification process. 
The result is that all the seven grey-box model structures are structurally 
identifiable. The most complex structure is the 5R3C model and is shown 
in Fig. 4. Other model structures are obtained by simplification and can 
be found in the Appendix. The physical meaning of the model parame
ters is listed in Table 2. 

The corresponding state-space model of Fig. 4 is given by:   

y(t)= [ 0 1 0 ]

⎡

⎣
Te(t)
Ti(t)
Tm(t)

⎤

⎦ (2)  

3.2. Model identification tool and optimization 

Both the deterministic and stochastic models are investigated using 
the MATLAB system identification toolbox [49]. The stochastic models 
are formulated as an extension of deterministic models (K = 0) [8]. The 
generic equations of the stochastic linear state-space model in innova

tive form are expressed as: 

dx
dt

=Ax(t) + Bu(t) + Ke(t) (3)  

y(t)=Cx(t) + e(t) (4)  
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(1)   

Table 2 
The physical interpretation of the parameters of all grey-box models.  

Parameters Physical interpretation and unit 

Ti Temperature of the internal node (i.e., indoor air, furniture) [◦C]. 
Te Temperature of the external walls [◦C]. 
Ts Temperature of the internal wall surfaces of external walls [◦C]. 
Tm Temperature of the internal walls [◦C]. 
Ta The outdoor (or outdoor) temperature [◦C]. 
Ci Heat capacity including the thermal mass of the air, the furniture 

[kWh/K]. 
Ce Heat capacity of the node external wall for the second-order and third- 

order models [kWh/K]. 
Cm Heat capacity of the node internal wall for the third-order model 

[kWh/K]. 
UA Overall heat transfer coefficient (HTC) between Ti and Ta [kW/K]. 
UAie Heat conductance between the building envelope and the interior 

[kW/K]. 
UAea Heat conductance between the outdoor and the building envelope 

[kW/K]. 
UAinf Heat conductance between the outddoor and the interior node 

(components with negligible thermal mass, like windows and doors) 
[kW/K]. 

UAim Heat resistance between the internal thermal mass and the interior 
node [kW/K]. 

UAis Heat resistance between the indoor wall surface and the interior node 
[kW/K]. 

Qint Internal heat gain from artificial lighting, people and electric 
appliances [kW]. 

Qh Heat gain delivered to the heat emitter [kW]. 
Qvent Heat gain from the ventilation (pre-computed using measurements) 

[kW]. 
Isol Global solar irradiation on a horizontal plane [W/m2]. 
Ai The effective window area of the building corresponding to Ti [m2]. 
Ae The effective window area of the building corresponding to Te [m2]. 
Am The effective window area of the building corresponding to Tm [m2]. 
As The effective window area of the building corresponding to Ts [m2]. 
α Fraction of internal gains injected to the internal node.  
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where x is the state vector, A, B and C are the system matrices, u is the 
input vector (i.e. Ta, Isol, Qint, Qh) and y is the output (i.e. indoor tem
perature, Ti). K is the disturbance matrix of the innovation form (Kalman 
gain) [50]. The matrices A, B, C and K are functions of the model pa
rameters (θ). The continuous-time model is discretized to identify the 
model parameters using discrete-time series measurement. The time 
discretization in the MATLAB system identification toolbox assumes 
piecewise-constant input data during each time interval (i.e. zero-order 
hold). 

Yu et al. [26] proved that the global optimization routine is more 
likely to avoid the local optimum compared to the pure gradient-based 
optimization routine. Wang et al. [51] successfully used the 
swarm-based optimization algorithm to estimate the parameters of 
thermal dynamic models. Thus, this paper also takes the global opti
mization routine to identify the parameters. The global optimization 
routine resorts to the heuristic particle swarm optimization (PSO) at the 
first stage. Then the default gradient-based optimization function 
(greyest) in the MATLAB identification toolbox is applied in the second 
stage to further polish the results. The objective function f(x) of the 
optimization is defined as Equation (5). 

f (x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
||yk − yk

∧
(θ)||2

N

√
√
√
√
√

(5)  

where yk is the measurement output, while ŷk(θ) is the prediction of the 
model (i.e., a simulation for the deterministic model and one-step ahead 
prediction for the stochastic model). 

3.3. Data pre-processing techniques 

Three distinct data pre-treatments are investigated in the paper. 
They are sampling, low-pass filtering and anti-causal shift (ACS). The 
original dataset has a sampling time (Ts) of 5 min which is faster than the 
highest frequency of the input signal (Tmin), such as the PRBS signal. 
Ljung et al. [25] demonstrated that longer sampling time with Ts > Tmin 
can lead to non-physical value and variance for the identified parame
ters, as confirmed by Yu et al. [26] in the context of the thermal dy
namics of the building. To investigate this effect, sampling times of 
increasing duration are considered in our investigations, namely 15, 30 
and 60 min. Before resampling the data, a low-pass filter can be applied. 
This leads to three scenarios:  

• Direct sampling (DS): Sampling at Ts without pre-filtering, which may 
cause large aliasing errors for large Ts.  

• Moving-average (MA) filter: The original 5 min data is averaged over a 
period Ts in the past before sampling. This can significantly decrease 
the aliasing error and it also conserves the integral of the physical 
quantity, such as energy.  

• Finite impulse response (FIR) filter: A FIR with a cut-off frequency of 1/ 
Ts is applied before sampling. The frequency content higher than the 
cut-off frequency is removed, which leads to a negligible aliasing 
error (if the FIR is designed at a sufficient order). 

The low-pass filters are applied to all input and output variables in 
the dataset. Thus, theoretically, no delay will be introduced in the 
dataset, which could influence the final results. The conclusion would be 
different if the low-pass filter was applied to a subset of the input and 
output data. 

Finally, time labeling plays a role in aligning inputs and outputs for 
the identification application [25]. As shown by Ljung et al. [25], a time 
shift, called anti-causal shift (ACS), of the input (Input Delay = -Ts) is 
beneficial for model identification with large Ts. 

3.4. Dynamics of the wall-mounted sensor 

Section 2.4 showed that the wall-mounted sensors have non- 
negligible thermal dynamics. Consequently, the grey-box model struc
tures introduced in Section 3.1 should be adapted to account for the 
effect of the time constant of sensor dynamics and thus avoid potential 
mistakes in the model identification process. As proposed in Bacher et al. 
[36], it is possible to add an additional node for the temperature sensor, 
leading to an extra resistance (Rs) and capacitance (Cs). However, the 
authors also pointed out that it was not possible to give a physical 
interpretation for the value of Cs. This was also found from our pre
liminary tests based on our data. Therefore, we rather introduced an 
adaptation of the model with a single additional parameter, the time 
constant of the sensor τ = RsCs. The model decreased the number of 
parameters compared to the version in the study [36] to increase the 
identifiability of the model. The dynamics for the sensor node is 
expressed by the following equation: 

dTsensor

dt
=

1
τ (Ti − Tsensor) (6)  

where Ti is the temperature of the internal node, Tsensor is the temper
ature measurement from the wall-mounted temperature sensors. 

3.5. Key performance indicator 

Several key performance indicators (KPIs) are defined to evaluate the 
model performance. They can be divided into two categories: the 
physical plausibility of the identified parameters and the prediction 
performance of the model. 

Physical plausibility means that the calibrated value of the model 
parameters should give a physically reasonable estimate of the thermal 
properties of the building. For conciseness in our study, it is not possible 
to report the value and variance of all the model parameters. However, 
the key parameters that are enough to support our conclusions will be 
presented: the overall heat transfer coefficient (HTC) and the capaci
tances (Ci and Ce). In addition, one parameter modeling the influence of 
the solar radiation, the effective window area (Ai), will also be taken as 
KPI when the influence of the data pre-processing is discussed. 

The overall heat transfer coefficient (HTC) is the total heat loss of the 
building in steady-state. Heat transfer by convection and long-wave 
radiative heat transfer is nonlinear. However, heat conduction is 
dominant and has good linear properties if the building is highly insu
lated and airtight. The combination of several resistances of the grey-box 
model forms the HTC, which is defined by Equation (7) for the 3R2C 
model. 

HTC =
1

1/UAie + 1/UAea
+ UAinf (7) 

Therefore, only the value of the HTC is shown in the later discussion, 
not its variance. Clauβ et al. [52] evaluated the HTC value of the ZEB 
Living Lab to be 83 W/K, which is used as the reference value for the 
HTC in this work. 

It is challenging to define a physically plausible range for the ca
pacitances (Ci and Ce) since their values strongly depend on the exci
tation signal. However, it is possible to obtain a rough indication of Ce. 
According to NS3031 (2016) [53], the effective heat capacitance (Ceff) 
of lightweight Norwegian buildings is typically within the range of 
3.4–6.5 kWh/K. As the Ceff is based on daily excitations of the thermal 
mass of a building, it can be related to the thermal capacitance Ce (at 
least, up to second-order RC models without a node for internal walls, 
Tm). 

The long-term prediction performance is of the utmost importance if 
the main application of the grey-box model is being employed in an 
MPC. Equation (8) gives the method of calculating the normalized root 
mean squared error (NRMSE). 
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NRMSE =
||yk − y∧ k||

||yk − mean(yk)||
(8) 

The NRMSE fitting, defined in Equation (9), is used to evaluate 
prediction performance. It translates how well the response of the pre
dicted model matches measurement data. If the fit is 100%, the model 
perfectly matches the measurement data, whereas a low or negative fit is 
a model of lower quality. The NRMSE fitting value is calculated based on 
simulation for the deterministic model and one-day ahead prediction for 
the stochastic model. In other words, for the stochastic model, the model 
selection is done using the one-step ahead prediction while the ability to 
perform MPC is evaluated using a one-day ahead prediction. 

NRMSEfit = (1 − NRMSE) × 100% (9) 

In addition to the NRMSE fitting value, the mean bias error (MBE) 
defined by Equation (10) is also used as a complementary index. 
Theoretically, an MBE value close to zero is best as this means that the 
residual of the model has a lower mean bias error. 

MBE =
1
n

∑n

k=1

(

yk − y∧k

)

(10) 

In practice, the results show that all our models have good MBE 
properties. Therefore, this index has been used but is not reported in the 
paper. 

4. Results 

This section is divided into three parts. Firstly, the selection of the 
best model structure is presented and discussed. With the best model, 
the influence of data pre-processing and the type of indoor temperature 
measurement are then studied. Finally, the results are analyzed for 
deterministic and stochastic models. Most of the results presented are 
based on the datasets with the electric heaters (Experiments 2–4). The 
description of each case presented in this section is given in Table 3. 

4.1. Model selection 

The results for the electric radiator and the seven models using the 
volume-averaged temperature and the baseline Ts of 5 min are sum
marized in Table 6 in Appendix, while the key results are presented in 
Table 4. 

• The first-order 1R1C model is not enough to describe the heat dy
namics of the building for neither the deterministic nor the stochastic 
models. This is confirmed by the cumulative periodogram of the 
residuals in supplementary material. The cumulative periodogram 
falls largely outside the confidence interval, which indicates poor 
white noise properties of the residuals.  

• The second-order models, 2R2C and 3R2C, show significant 
improvement in the NRMSE fitting compared to the first-order 1R1C 
model. The cumulative periodogram of the residuals also stays 
strictly within the confidence interval.  

• Although the third-order models (3R3C to 5R3C) sometimes present 
better NRMSE fitting with the deterministic model, the identified 
parameters are not physically plausible for the stochastic model. The 
capacitance of the interior node Ci has a larger value than the value 
of the internal walls node Cm, which does not translate the actual 
physics. Furthermore, for the 4R3C and 5R3C stochastic models, the 
UAea value is identified close to 0, which also violates the reality (as 
external walls are not perfectly insulated). Regarding the cumulative 
periodogram of the residuals, the 5R3C is outside the confidence 
interval while the 3R3C and 4R3C models remain within the confi
dence interval but do not perform better than the second-order 
models. The variance of the key parameter Ce also shows that the 
third-order models could lead to large values with deterministic 
models, which implies that the third-order models may be over
fitting. Further, the variance of Ce for the stochastic model also shows 
that the component UAinf is necessary to be modeled. Finally, the 
objective function during the successive PSO iterations is plotted 
along with the parameter value. The scatter plots for parameters Ce 
and Ai for second-order and third-order models can also be found in 
supplementary material. It is observed from the scatter plots that the 
optimum are flatter with third-order models, which corresponds to 
lower practical identifiability of the models. It can be concluded that 
the third-order models are (or are close to being) overfitted. The 
fitting of validation NRMSE fitting also confirms that the second- 
order model is the best trade-off between model complexity and 
accuracy. 

In conclusion, second-order grey-box models are most suitable for 
our study as the prediction performance and the physical plausibility are 
good. In addition, the dominant physical processes are properly modeled 
as proven by the cumulative periodogram. The second-order models are 
selected for the study as they are accurate but not overfitted. This gua
rantees that the conclusions will not be contaminated by overfitting. 
Among second-order models, the 3R2C model is taken as the baseline 
case in the remainder of the paper. 

4.2. Influence of the temperature measurement 

The model selection is based on the volume-averaged indoor tem
perature at 5 min. In the description of experiments, it has been shown 
that the indoor temperature is dependent on the type of measurement, 
see Section 2.4. Consequently, Fig. 5 and Fig. 6 compare the identified 
value of two key indicators (HTC and Ce) for the different types of 
temperature measurement, still using a sampling time of 5 min. For the 
deterministic model, the difference in temperature measurements has a 
limited influence on the identified model parameters. However, for the 
stochastic model, the identified HTC value using the baseline 3R2C 
model and the single wall-mounted temperature sensor is much larger 
than the reference HTC value. Furthermore, the variance of Ce is also 
extremely large. Thus, the time constant of the wall-mounted sensor 
dynamics has a large impact on the stochastic 3R2C model. This 
conclusion is also confirmed by the cumulative periodogram of the 

Table 3 
Description of the datasets and their corresponding abbreviations.  

Case Sensor Sensor node in model Dataset Use 

T1Exp2 Volume-averaged temperature (T1) No Experiment 2 Validation 
T1Exp3 Volume-averaged temperature (T1) No Experiment 3 Validation 
T1Exp4 Volume-averaged temperature (T1) No Experiment 4 Training 
T2Exp4 Single temperature sensor in the air (T2) No Experiment 4 Training 
T3Exp4 Single wall-mounted temperature sensor (T3) No Experiment 4 Training 
T4Exp4 Single wall-mounted temperature sensor (T4) Yes (τ) Experiment 4 Training 
T5Exp5 Single wall-mounted temperature sensor (T5) No Experiment 5 Training 
T6Exp5 Single wall-mounted temperature sensor (T6) Yes (τ) Experiment 5 Training  
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residuals in Fig. 7, which shows that the baseline 3R2C model with the 
wall-mounted sensor does not describe the system dynamics (between 
0.4–1.4 × 10− 3 Hz). As introduced in Section 3.4, an adapted model with 
a time constant for the sensor is added to the original 3R2C model. This 
adapted model improves the results since the parameters become 
physically plausible again. In addition, the cumulative periodogram of 
the residuals confirms this conclusion (see dataset T4Exp4). Further
more, the one-day ahead prediction comparison in Fig. 8 also shows the 
significant improvement from the adapted 3R2C compared to the orig
inal baseline 3R2C model. The identified time constant (τ) has a value of 
8.28 min, thus is larger than the sampling time. For the remainder of the 
paper, the sensor node will only be analyzed for the stochastic model. 

4.3. Influence of data pre-processing on grey-box modeling 

Until now, the model performance has used a sampling time of 5 min 
without data pre-processing, which is faster than the Nyquist sampling 
frequency. The signal is sampled faster than the system dynamics so that 
it is guaranteed that it does not influence the results. Consequently, the 
specific influence of data-preprocessing can be identified in the present 
section. The analysis of deterministic and stochastic models should be 
clearly distinguished. 

Table 4 
The values and the corresponding variance of Ce.  

Model Ce 

Value 
[kWh/K] 

Ce 

Variance 
[kWh/K] 

NRMSE Fitting 
(simulation) 

NRMSE Fitting 
(validation) 

Model Ce 

Value 
[kWh/K] 

Ce 

Variance 
[kWh/K] 

NRMSE Fitting (1- 
step ahead) 

NRMSE Fitting 
(validation) 

1R1Cdet 5.62 0.754 72.7% 55.1% 1R1Csto 4.78 0.437 99.0% 65.7% 
2R2Cdet 6.11 0.369 93.0% 75.3% 2R2Csto 6.37 1.77 99.2% 79.2% 
3R2Cdet 5.28 0.284 93.6% 79.7% 3R2Csto 4.22 0.748 99.2% 81.8% 
4R2Cdet 5.40 0.430 93.5% 72.4% 4R2Csto 4.28 0.726 99.2% 81.5% 
3R3Cdet 6.08 0.689 95.0% 78.6% 3R3Csto 11.9 3.92 99.2% 71.1% 
4R3Cdet 3.94 0.609 95.3% 75.6% 4R3Csto 4.02 0.709 99.2% 82.7% 
5R3Cdet 3.99 0.613 95.3% 76.0% 5R3Csto 5.73 0.718 99.2% 79.8% 

(For the first-order 1R1C model, Ce does not exist and the value reported in the table is the value of Ci. Bold values inside the table indicates unphysical parameters.) 

Fig. 5. Comparing the HTC of the 3R2C deterministic (det) and stochastic (sto) 
models using Experiment 4 and different types of temperature measurement 
(5 min). 

Fig. 6. Comparing the Ce of the 3R2C deterministic (det) and stochastic (sto) 
models using Experiment 4 and different types of temperature measurement 
(5 min). 

Fig. 7. Cumulative periodogram of the residuals of the model 3R2C for 
different types of indoor temperature measurement. 
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4.3.1. Influence of data-preprocessing on the deterministic model 
Fig. 9 presents the identified parameters results for the deterministic 

model using different types of temperature measurement and data pre- 
processing. 

The identified values of HTC show that no matter which type of 
temperature is used for the identification, the HTC value is not signifi
cantly influenced by the pre-filtering method and ACS. The value is close 
to the reference value of ~83 W/K. The sampling time (Ts) does not 
have a noticeable impact on the HTC value. 

The identified values of Ce give similar conclusions as the HTC value. 
The value of Ce is plausible for most of the cases since it is within the 
typical range (i.e., 3.4–6.5 kWh/K) given in standards [53]. The 
low-pass filtering and the ACS only have a slight impact on the results. 
With direct sampling, the Ce values are slightly outside the reference 
range when the sampling time is large (from 30 min). These conclusions 
are confirmed by the analysis of the effective window area Ai (related to 
the influence of solar radiation). 

Regarding the simulation performance of the deterministic model, 
the influence of data pre-processing and the type of temperature mea
surement are also limited as are the identified parameters. Conse
quently, the simulation performance is only demonstrated for the 
volume-averaged temperature (see Fig. 10). 

Several main conclusions can be drawn concerning the deterministic 
model. They are in good agreement with the findings of Yu et al. [26] 
using virtual experiments. Firstly, the pre-processing of data does not 
have a considerable influence on the deterministic model. Secondly, the 
pre-filtering technique could slightly contribute to a more stable esti
mation of the values if the sampling time Ts is large (>30 min). Thirdly, 
the influence of data pre-processing on simulation performance is 
negligible. 

4.3.2. Influence of data-preprocessing on the stochastic model 
As shown in Fig. 11, the data pre-processing has a more substantial 

influence on the identified HTC value for the stochastic model. The ACS 
can contribute to preventing the HTC value from becoming non-physical 

(stays close to the target reference value) for large sampling times. If the 
filter and the ACS are applied together, the identified HTC value remains 
stable and close to the reference value for the stochastic model. How
ever, the identified HTC values are often non-physical using the baseline 
3R2C model when the dynamics of the wall-mounted temperature sen
sors are not modeled, even when the sampling time becomes large. 
Again, only the adapted 3R2C model with a sensor node gives plausible 
HTC values. This result is counterintuitive. In Section 4.2, the time 
constant of the wall-mounted sensor has been estimated to be about 8 
min. Therefore, it could be expected that the effect of the sensor dy
namics would be filtered out by taking a larger sampling time (>15 
min). However, this is not the case. This last conclusion is much clearer 
when analyzing Ce. 

The identified Ce for the stochastic model without and with ACS are 
shown in Fig. 11, respectively. This confirms the positive effect of ACS 
for large sampling times. For cases without ACS, the identified Ce value 
and variance become non-physical when the sampling time is larger. The 
Ce values from volume-averaged temperature (T1) and the single wire
less temperature (T2) sensors remain physically plausible for the large 
sampling times if the filter and ACS are applied simultaneously. 
Regarding the wall-mounted sensor, the baseline 3R2C model (T3) does 
not give plausible Ce values even for large sampling times. The low-pass 
filtering or ACS does not improve the performance. This confirms that, 
even though the sensor time constant (~8 min) is significantly shorter 
than the sampling time, its influence is not filtered out and it still im
pacts the performance of the stochastic model. For the adapted model 
(T4), the Ce value remains physically plausible for large sampling times 
when the ACS and the low-pass filter are applied, just like the datasets T1 
and T2. It is worth mentioning that the Ce values from a single sensor are 
generally larger than those identified from the volume-averaged 
temperature. 

At this stage, the influence of the ACS does not need to be further 
demonstrated. Therefore, the Ai values for the stochastic model are only 
shown in Fig. 11 with ACS. The results for Ai are consistent with the 
results for Ce and confirm the previous conclusions. 

The identified τ values for the adapted 3R2C model with a sensor 
node can be found in Table 5. The sampling time (Ts) of 5 min is shorter 
than the identified time constant of about 8 min. However, when the Ts 
becomes significantly larger than 8 min, τ cannot understandably be 
identified at a lower value than Ts. In other words, a sound conclusion is 
that if the identified sensor time constant is to be physically plausible, 
the data should be sampled at a higher frequency than the sensor 
dynamics. 

Fig. 12 compares the ability of the model to perform MPC using the 
one-day ahead prediction performance for the stochastic model identi
fied using the volume-averaged temperature (T1). Large sampling times 
have a limited effect on the one-day ahead prediction performance. The 
low-pass filter increases the one-day ahead prediction mainly for the 
validation datasets using Experiment 2. While the ACS improves the 
physical plausibility of the model parameters for large sampling times, 
its influence on the one-day ahead prediction performance is not sys
tematic: it has a slightly positive impact on Experiments 3 and 4 but a 
negative influence on Experiment 2. 

For the case of wall-mounted temperature sensors, the improvement 
from the adapted model for the one-day ahead prediction performance is 
significant. The results are shown in Fig. 13 and Fig. 14. If the same pre- 
processing is applied (i.e., sampling time and filtering method), the 
NRMSE fitting from the adapted 3R2C stochastic model with sensor 
node (T4) is always higher than the baseline 3R2C stochastic model 
without sensor node (T3). Using the wall-mounted sensor, the influence 
of large sampling time is considerable. However, this effect is reduced 
using low-pass filtering. The influence of ACS is still not systematic. 
Nevertheless, for the adapted model, the ACS systematically improves 
the prediction performance. 

To sum up, except for wall-mounted sensors, large Ts have a limited 
effect on the prediction performance, which is in good agreement with 

Fig. 8. Comparing the one-day ahead prediction of the 3R2C stochastic (sto) 
models with different types of temperature measurement, trained using 
Experiment 4 and validated using Experiments 2, 3. 
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the findings of Yu et al. [26]. For the wall-mounted sensor, additional 
measures should be taken to conserve the prediction performance with 
large Ts. As for the physical plausibility, the low-pass filtering improves 
the prediction performance. However, the positive influence of the ACS 
for Ts is not as systematic for the prediction performance as it was for the 

physical plausibility of the parameters. 

4.3.3. Stochastic model with hydronic radiator 
As previously mentioned, the air temperature was only measured 

using the wall-mounted sensors for the experiment using the hydronic 

Fig. 10. Comparison of the simulation performance of the deterministic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and 
validated using Experiments 2, 3. 

Fig. 9. Identified HTC, Ce and Ai of the 3R2C deterministic model for Experiment 4 with different types of temperature, data pre-processing techniques.  
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radiator. As it has been proven that the sensor node was necessary for 
the modeling, only the performance of the adapted model is analyzed. 
Unlike the electric heater, the thermal dynamics of the hydronic radiator 
are significant (see Section 2.4). The analysis of the measured inlet and 
outlet temperatures of the hydronic radiator showed that its time 

constant is about 7 min. A priori, like the wall-sensor, it is expected that 
the hydronic radiator dynamics should influence the model perfor
mance, at least for a sampling time of 5 min (<7 min). However, the 
wall-mounted temperature sensor has a time constant of about 8 min. 
Consequently, the dynamics of the hydronic radiator cannot be properly 
captured by a grey-box model since the time constant of the wall- 
mounted sensor is comparable (or slightly larger) than the time con
stant of the hydronic radiator. The analysis of the cumulative periodo
gram (not reported here for the sake of the conciseness) shows that the 
adapted 3R2C can model the building heated using the hydronic radi
ator without the need to add a specific capacitance to model the hy
dronic radiator. In addition, preliminary results with an additional 
capacitance proved that the resulting model would be overfitted. 

The experiments with the hydronic radiator and the electric heater 
have been performed in different years and different months of the 
heating season, leading to different sun elevations between the experi
ments. The identified effective window area Ai is thus expected to be 
significantly different for Experiment 5 and Experiments 2 to 4. Thermal 
properties that are intrinsic to the building fabric and less dependent on 

Fig. 11. Identified HTC, Ce and Ai of the 3R2C stochastic model for Experiment 4 with different types of temperature measurement and data pre- 
processing techniques. 

Table 5 
Identified time constant (τ) of the 3R2C adapted stochastic model for Experi
ment 4 with different data pre-processing techniques.  

Sampling 
time 
[min] 

DS MA FIR 

τ 
value 
[min] 

τ 
variance 
[min] 

τ 
value 
[min] 

τ 
variance 
[min] 

τ 
value 
[min] 

τ 
variance 
[min] 

5 8.28 0.420 – – – – 
15 16.4 1.82 12.9 1.21 11.6 1.04 
30 67.9 62.1 26.2 3.59 27.6 4.08 
60 97.6 19,465 79.1 1031 76.5 223  
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the outdoor conditions are used to analyze the model performance in 
Experiment 5, namely the HTC and Ce (Fig. 15). The identified HTC is 
still close to the reference value. Unlike the experiments with the electric 
heater, there is no significant difference between the baseline and 
adapted 3R2C models and the HTC remains plausible for large sampling 
times (with ACS). 

However, the improvement resulting from the adapted model and 
ACS is more visible when analyzing Ce. Again, the HTC translates into a 
steady-state performance while the capacitances are inherently related 
to the building dynamics. Conclusions with the hydronic radiator are in 
line with the conclusions using Experiment 4 with the electric heater. 
With the baseline 3R2C model, the estimated Ce is entirely non-physical 
even using pre-filtering and ACS. The results are noticeably improved 
with the adapted 3R2C model with a sensor node. If the pre-filtering and 

ACS are applied, the Ce value strictly stays within the reference range no 
matter how large the sampling time is. For Experiment 5, it is worth 
mentioning that the quality of the adapted 3R2C model is marginal as 
the variance Ce is sometimes very large. Nevertheless, this does not 
impact the main conclusion. The experiment with the hydronic radiator 
confirms the positive influence of the adapted model with τ, the low- 
pass filtering and the ACS for large sampling times. 

5. Discussion 

This paper analyzes the influence of data pre-processing and sensor 
dynamics on the grey-box modeling of the building thermal dynamics 
using the MATLAB system identification toolbox. Some limitations to 
the work can be listed and discussed: 

Fig. 12. One-day ahead prediction of the stochastic 3R2C model using the volume-averaged temperature (T1), trained using Experiment 4 and validated using 
Experiments 2, 3. 

Fig. 13. One-day ahead prediction of the baseline stochastic 3R2C model using a single wall-mounted sensor (T3), trained using Experiment 4 and validated using 
Experiments 2, 3. 
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• Important conclusions based on virtual experiments have already 
been drawn in the previous study of Yu et al. [26]. However, field 
measurements are different from virtual experiments. The paper 
succeeded in extending the conclusions from virtual experiments to a 
real test case with field measurements. However, more test cases are 
needed to have a generalization of the conclusions. It has been 
decided to limit the paper to a single test case. The experimental 
setup and the methodology should be sufficiently described to make 
the results transparent and reproducible. For the sake of conciseness, 
this limits the paper to a single test case.  

• The test case is a super-insulated building with balanced mechanical 
ventilation and an energy-efficient heat recovery unit. This enabled 
the building to be modeled as a single thermal zone. This test case is 

relatively specific as most of the existing houses in the Norwegian 
building stock do not have these thermal properties. However, it is 
expected that the conclusions of the paper regarding data pre- 
treatment are not affected by the insulation level and type of 
ventilation.  

• The paper considers that the data pre-treatment is performed equally 
for all input and output data. This is possible when the data pre- 
treatment is performed explicitly by the modeler. However, when 
the data pre-treatment is performed implicitly by the hardware (i.e., 
the sensor or the DAQ), this pre-treatment can affect the input and 
output data differently. In this case, additional data pre-treatment 
techniques should be considered (such as the identification of lag). 
The conclusions of the paper need to be extended to this case as well. 

Fig. 14. One-day ahead prediction of the adapted stochastic 3R2C model using a single wall-mounted sensor (T4), trained using Experiment 4 and validated using 
Experiments 2, 3. 

Fig. 15. HTC and Ce for the 3R2C stochastic model using Experiment 5 and different data pre-processing techniques.  
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• The analysis is based on the MATLAB system identification toolbox, 
where the stochastic equations are written in innovation form. For 
the generalization, results should be reproduced in other system 
identification tools and formulations, such as CTSM-R [54]. 

6. Conclusion 

This study is based on two experimental setups using two different 
space-heating emission systems, namely an electric heater and a hy
dronic radiator. The pre-processing techniques include low-pass filtering 
(using MA or FIR), the sampling time (Ts) and the application of anti- 
causal shift (ACS). Three different types of temperature measurements 
are analyzed to investigate the influence of the sensor selection and 
dynamics (i.e. volume-averaged air temperature, single temperature 
sensor without casing and single wall-mounted sensor). 

To analyze the specific influence of the data pre-processing, it is 
important to ensure that the model performance is not polluted by other 
phenomena, such as overfitting or poor model fidelity. Therefore, the 
study starts by selecting a suitable structure for the grey-box model and 
proves that a mono-zone second-order model is an appropriate trade-off, 
with (1) a good prediction performance and (2) good interpretability of 
the physical parameters of the model (i.e., physical plausibility) (3) 
without beginning to be overfitted. Consequently, a mono-zone 3R2C 
model is taken as the baseline structure to illustrate the key research 
questions of the paper. Conclusions are presented separately between 
deterministic and stochastic models. 

Deterministic model:  

• Yu et al. [26] used virtual experiments and the data pre-processing 
has a limited influence on the model performance. This is 
confirmed using field experiments. In addition, the sensor thermal 
dynamics also has a limited influence on the deterministic model 
performance. 

Stochastic model:  

• Yu et al. [26] used virtual experiments and the parameters became 
non-physical without ACS for large sampling time (Ts). On the con
trary, large sampling times did not alter the simulation performance 
significantly. Although the ACS tends to improve the physical plau
sibility of the model parameters with Ts, in general, it had a negative 
influence on the simulation performance of the model.  

• These results are partly confirmed using field measurements. Like in 
Yu et al. [26], large Ts can cause the parameters to become 
non-physical without ACS. ACS is excessively beneficial to guarantee 
the physical plausibility of parameters, making the identified pa
rameters insensitive to the sampling time. Like in Yu et al. [26], large 
Ts has a limited effect on the prediction performance for the tem
perature sensors without casing. However, for the wall-mounted 
sensor, pre-filtering and sometimes ACS should be used to converse 
the prediction performance at large Ts. Like Yu et al. [26] 
pre-filtering has a beneficial influence on the model performance but 
not in a dominant way. Unlike Yu et al. [26], the influence of ACS on 

prediction performance is most often beneficial in our study. At this 
stage, it can be concluded that the influence of the sampling time and 
ACS on the prediction performance is not systematic (i.e., sometimes 
positive or negative).  

• The results for stochastic models depend on the type of temperature 
measurement. Firstly, the cases with temperature sensors with 
negligible thermal dynamics (i.e., free-standing air temperature 
sensor without casing) are analyzed. Even though the vertical ther
mal stratification is significant, there is only a slight reduction in the 
model performance when moving from a volume-averaged mea
surement to a single sensor located at mid-height in the room. Sec
ondly, when the temperature sensor is the wall-mounted 
temperature sensor, an adapted model with time constant dynamics 
for the sensor is needed to obtain a physically plausible estimation of 
the parameters. This is an important conclusion as most buildings are 
equipped with wall-mounted temperature sensors. To limit the in
vestment, the number of sensors should also be limited, making a 
volume-averaged measurement expensive.  

• The dynamics of the hydronic radiator (with significant thermal 
mass) are not necessary to be modeled if the time constant of the 
measurement device is larger than that of the hydronic radiator. 

As the article is based on a single test case, additional research on 
real buildings is needed to generalize the conclusions. These findings 
provide practical guidelines to identify the thermal dynamics of build
ings using grey-box models and field measurement data. 
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Fig. 16. Grey-box model structures except for the most complicated 5R3C model.   

Table 6 
Model identification results of the candidate models with 5 min data and volume-averaged temperature (T1), values highlighted with bold color are non-physical 
values.  

Model UAea [W/K] UAie [W/K] UAim [W/K] UAinf [W/K] UA [W/K] UAas [W/K] UAes [W/K] UAis [W/K] Ce [kWh/K] Ci [kWh/K] 

1R1Cdet – – – – 106 – – – – 5.62 
2R2Cdet 114 826 – – – – – – 6.11 0.749 
3R2Cdet 80.2 876 – 23.0 – – – – 5.28 0.767 
4R2Cdet 52.1 – – 51.5 – – 2558 1345 5.40 0.781 
3R3Cdet 153 404 565 – – – – – 6.08 0.961 
4R3Cdet 104 303 687 26.5 – – – – 3.94 0.909 
5R3Cdet 102  686 – – 28.1 331 4694 3.99 0.908 
1R1Csto – – – – 109 – – – – 4.78 
2R2Csto 109 1058 – – – – – – 6.37 1.24 
3R2Csto 17.1 868 – 63.5 – – – – 4.22 1.15 
4R2Csto 0.000 1181 – 78.5 – – – 3342 4.28 1.11 
3R3Csto 123 552 763 – – – – – 11.9 1.23 
4R3Csto 5.40 692 346 71.4 – – – – 4.02 1.21 
5R3Csto 0.000 – 375 – – 108 8492 1087 5.73 1.19 

Model Cm [kWh/K] Ai [m2] Ae [m2] Am [m2] As [m2] alpha [− ] MBE NRMSE (one- 
step) 

NRMSE 
(prediction) 

HTC [W/K] 

1R1Cdet – 2.99 – – – – 0.0010 – 72.7% 105 
2R2Cdet – 2.96 0.000 – – – 0.0007 – 93.0% 100 
3R2Cdet – 2.62 0.000 – – – 0.0008 – 93.6% 96.4 
4R2Cdet – 2.78 – – 0.000 – − 0.0033 – 93.5% 103 
3R3Cdet 2.09 3.82 – 0.000 – 0.500 − 0.0017 – 95.0% 111 
4R3Cdet 2.58 3.19 – 0.000 – 0.500 0.0025 – 95.3% 104 
5R3Cdet 2.54 – – 0.000 3.21 0.500 − 0.0017 – 95.3% 106 
1R1Csto – 3.39 – – – – − 0.0008 99.0% 73.4% 109 
2R2Csto – 3.07 0.000 – – – 0.0000 99.2% 87.3% 98.8 
3R2Csto – 1.56 0.122 – – – 0.0000 99.2% 87.2% 80.3 
4R2Csto – 1.09 – – 0.686 – 0.0001 99.2% 86.6% 78.5 
3R3Csto 1.16 3.07 – 0.819 – 0.500 0.0002 99.2% 80.6% 101 
4R3Csto 0.042 1.44 – 0.000 – 0.500 0.0001 99.2% 86.1% 76.8 
5R3Csto 0.038 – – 0.078 2.67 0.500 0.0001 99.2% 88.9% 108 
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